Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (8): 81-87.doi: 10.11924/j.issn.1000-6850.casb2021-0993
Special Issue: 生物技术
Previous Articles Next Articles
WANG Lina1,2(), YANG Ying1,2(
), Du Su1,2
Received:
2021-10-18
Revised:
2022-01-05
Online:
2022-03-15
Published:
2022-04-06
Contact:
YANG Ying
E-mail:2314874484@qq.com;591908603@qq.com
CLC Number:
WANG Lina, YANG Ying, Du Su. Effects of Biochar Application on Saline-alkali Soil: Research Status[J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 81-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0993
生物炭 施入形式 | 盐碱土壤 改良位置 | 生物质 类型 | 最佳 比例 | 生物炭对土壤影响 | 参考 文献 |
---|---|---|---|---|---|
生物炭 单独施入 盐碱土壤 | 滨海盐碱地 | 小麦秸秆 | 8% | 施入生物炭后,综合改良了土壤理化性质,降低了土壤容重,提高了总孔隙度、土壤饱和持水量和田间持水量,提高了渗透量;水溶性盐总量降低;综合提高了土壤养分氮磷钾有机质等及利用率;增加了土壤中细菌的相对丰度,影响了细菌群落组成;提高了作物的产量等。 | [22] |
黄河三角洲 | 水稻秸秆 | 5.0% | [23] | ||
松嫩平原 西部 | 玉米秸秆 | 65 t/hm2 | [24] | ||
黄河三角洲 | 杏仁壳 | 0.5% | [25] | ||
生物炭与 其他 配合施入 盐碱土壤 | 吉林省西部 | (玉米秸秆+10%牛粪)与复合菌剂 | 6%炭+复合菌剂 | 综合二者或更多联合配施的效果:都改善了土壤,降低了土壤pH、EC、ESP及提高土壤养分的效果,相比于单独加入生物炭,联合配施效果更为显著,腐殖酸的脱质子化导致形成大的有机多阴离子,将粘土颗粒结合成微团聚体;添加家禽粪便和堆肥会影响土壤的化学性质,提高CEC和交换性钾;绿肥提高了微生物呼吸降低了pH,增加了CaCO3的溶解度;有机肥对土壤呼吸、脲酶和碱性磷酸酶活性产生了显著的作用;添加有机材料可以提高土壤结构稳定性[ | [26] |
黄河三角洲 | 花生壳与肥料 | 炭与肥料≤5% | [27] | ||
黄河中上游 | 浒苔与木醋液 | 2%炭+2% 木醋液 | [28] | ||
内蒙古地区 | (玉米秸秆、葵花秸秆)与腐殖酸 | 25 g/kg混合生物与10%腐殖酸 | [29] |
生物炭 施入形式 | 盐碱土壤 改良位置 | 生物质 类型 | 最佳 比例 | 生物炭对土壤影响 | 参考 文献 |
---|---|---|---|---|---|
生物炭 单独施入 盐碱土壤 | 滨海盐碱地 | 小麦秸秆 | 8% | 施入生物炭后,综合改良了土壤理化性质,降低了土壤容重,提高了总孔隙度、土壤饱和持水量和田间持水量,提高了渗透量;水溶性盐总量降低;综合提高了土壤养分氮磷钾有机质等及利用率;增加了土壤中细菌的相对丰度,影响了细菌群落组成;提高了作物的产量等。 | [22] |
黄河三角洲 | 水稻秸秆 | 5.0% | [23] | ||
松嫩平原 西部 | 玉米秸秆 | 65 t/hm2 | [24] | ||
黄河三角洲 | 杏仁壳 | 0.5% | [25] | ||
生物炭与 其他 配合施入 盐碱土壤 | 吉林省西部 | (玉米秸秆+10%牛粪)与复合菌剂 | 6%炭+复合菌剂 | 综合二者或更多联合配施的效果:都改善了土壤,降低了土壤pH、EC、ESP及提高土壤养分的效果,相比于单独加入生物炭,联合配施效果更为显著,腐殖酸的脱质子化导致形成大的有机多阴离子,将粘土颗粒结合成微团聚体;添加家禽粪便和堆肥会影响土壤的化学性质,提高CEC和交换性钾;绿肥提高了微生物呼吸降低了pH,增加了CaCO3的溶解度;有机肥对土壤呼吸、脲酶和碱性磷酸酶活性产生了显著的作用;添加有机材料可以提高土壤结构稳定性[ | [26] |
黄河三角洲 | 花生壳与肥料 | 炭与肥料≤5% | [27] | ||
黄河中上游 | 浒苔与木醋液 | 2%炭+2% 木醋液 | [28] | ||
内蒙古地区 | (玉米秸秆、葵花秸秆)与腐殖酸 | 25 g/kg混合生物与10%腐殖酸 | [29] |
[1] | 赵可夫, 李法曾, 张福锁. 中国盐生植物(第二版)[M]. 北京: 科学出版社, 2013. |
[2] |
王琦瑾, 朱建宁. 弹性理念下的盐碱化内陆湖景观修复研究——以黄旗海湿地自然保护区为例[C]//中国风景园林学会2020年会论文集(下册), 2020:46-51.DOI: 10.26914/c.cnkihy.2020.056813.
doi: 10.26914/c.cnkihy.2020.056813 |
[3] |
KONSTANTIN I, HARM B, ARNOLD K.B, et al. Global mapping of soil salinity change[J]. Remote Sensing of Environment, 2019, 231:111260-111260.
doi: 10.1016/j.rse.2019.111260 URL |
[4] |
YE L M, ERIC Van R. Production scenarios and the effect of soil degradation on long-term food security in China[J]. Global Environmental Change, 2009, 19(4):464-481.
doi: 10.1016/j.gloenvcha.2009.06.002 URL |
[5] | WONG V N L, DALAL. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation[J]. Applied Soilless Ecology, 2009, 41:29-40. |
[6] |
SHAMIM G, JOANN K W, BEN W T, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture, Ecosystems and Environment, 2015, 206:46-59.
doi: 10.1016/j.agee.2015.03.015 URL |
[7] |
GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology and Fertility of Soils, 2002, 35(4):219-230.
doi: 10.1007/s00374-002-0466-4 URL |
[8] |
SEVDA A, HOSSEIN G, CHENGRONG C, et al. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review[J]. Journal of Soils and Sediments, 2016, 16(3):939-953.
doi: 10.1007/s11368-015-1293-1 URL |
[9] | 欧洲生物炭基金会(EBC). 欧洲生物炭证书-生物炭可持续生产准则[EB/OL]. http://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf. European Biochar Certificate (EBC), 2015-06-19. |
[10] |
XIU L Q, ZHANG W M, WU D, et al. Biochar can improve biological nitrogen fixation by altering the root growth strategy of soybean in Albic soil[J]. The Science of the total environment, 2021, 773:144564-144564.
doi: 10.1016/j.scitotenv.2020.144564 URL |
[11] | EASTMAN C M. Soil Physical Characteristics of An Aeric Ochraqualf Amended with Biochar[D]. Columbus: The Ohio State University, 2011:4-4. |
[12] |
张伟明, 修立群, 吴迪, 等. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1):1-18.
doi: 10.3724/SP.J.1006.2021.02021 |
[13] | 王丽渊, 李小龙, 任天宝, 等. 生物质炭化还田作为土壤改良与循环农业的技术途径分析[J]. 湖北农业科学, 2020, 59(14):18-24. |
[14] | 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011, 20(4):779-785. |
[15] |
YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3):3488-3497.
doi: 10.1016/j.biortech.2010.11.018 URL |
[16] |
MANOJ T, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 55:467-481.
doi: 10.1016/j.rser.2015.10.122 URL |
[17] |
LIANG B, LEHMANN J, SOLOMO D, et al. Black Carbon Increases Cation Exchange Capacity in Soils[J]. Soil Science Society of America Journal, 2006, 70(5):1719-1730.
doi: 10.2136/sssaj2005.0383 URL |
[18] | TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Pergamon, 2015, 125:70-85. |
[19] | 李俊哲, 徐泽, 刘昱彤, 等. 盐生植物生物炭改良盐碱地前景探讨[J]. 环境与发展, 2021, 33(1):93-96. |
[20] | 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16):3324-3333. |
[21] |
FIELD J L, KeSke C M H, BIRCH G L, et al. Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts[J]. GCB Bioenergy, 2013, 5(2):177-191.
doi: 10.1111/gcbb.12032 URL |
[22] | 果才佳, GAMARELDAWLA H D Agbna, 佘冬立, . 生物炭施用对滨海盐碱地番茄生长与耗水规律的影响[J]. 中国农村水利水电, 2021(7):181-184,191. |
[23] | 梁晓艳, 衣葵花, 李萌, 等. 生物炭对盐碱地藜麦根系生长及生理特性的影响[J]. 山东农业科学, 2020, 52(12):24-29,38. |
[24] | 刘德福. 生物炭对盐碱化农田土壤微环境和大豆生长的影响[D]. 哈尔滨:黑龙江八一农垦大学, 2020:18-87. |
[25] | 张进红, 吴波, 王国良, 等. 生物炭对盐渍土理化性质和紫花苜蓿生长的影响[J]. 农业机械学报, 2020, 51(8):285-294. |
[26] |
庞宁, 张雪, 刘俊清, 等. 复合微生物菌剂在苏打盐碱土改良中的应用[J/OL]. 吉林农业大学学报:1-12[2022-03-07].DOI: 10.13327/j.jjlau.2021.1252.
doi: 10.13327/j.jjlau.2021.1252 |
[27] | Zheng H, Wang X, Chen L, et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation[J]. Plant, cell & environment, 2018, 41(3):517-532. |
[28] |
王正, 孙兆军, Sameh El-Sawy, 等. 浒苔生物炭与木醋液复配改良碱化土壤效果及提高油葵产量[J]. 环境科学, 2021, 42(12):6078-6090.DOI: 10.13227/j.hjkx.202103068.
doi: 10.13227/j.hjkx.202103068 |
[29] | 韩剑宏, 孙一博, 张连科, 等. 生物炭与腐殖酸配施对盐碱土理化性质的影响[J]. 干旱地区农业研究, 2020, 38(6):121-127. |
[30] |
BAUDER J W, BROCK T A. Irrigation Water Quality, Soil Amendment, and Crop Effects on Sodium Leaching[J]. Arid Land Research and Management, 2001, 15(2):101-113.
doi: 10.1080/15324980151062724 URL |
[31] | 王世斌, 高佩玲, 赵亚东, 等. 生物炭、有机肥连续施用对盐碱土壤改良效果研究[J]. 干旱地区农业研究, 2021, 39(3):154-161. |
[32] | 刘莹. 生物碳对土壤保水性的影响研究[D]. 邯郸:河北工程大学, 2020:16-44. |
[33] | 孙枭沁, 房凯, 费远航, 等. 施加生物质炭对盐渍土土壤结构和水力特性的影响[J]. 农业机械学报, 2019, 50(2):242-249. |
[34] | 勾芒芒, 屈忠义. 生物炭与化肥互作对土壤含水率与番茄产量的影响[J]. 农业机械学报, 2018, 49(11):283-288. |
[35] | 魏永霞, 王鹤, 刘慧, 等. 生物炭对黑土区土壤水分及其入渗性能的影响[J]. 农业机械学报, 2019, 50(9):290-299. |
[36] | 李国柱. 盐碱土壤调理剂研究初探[J]. 新疆农垦科技, 2020, 43(12):29-32. |
[37] |
MANDANA S, LUCY P R, THOMAS B. Effect of physical amendments on salt leaching characteristics for reclamation[J]. Geoderma, 2017, 292:96-110.
doi: 10.1016/j.geoderma.2017.01.007 URL |
[38] |
SAQIB S A, MATHIAS N A, LIU F L. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 2015, 158:61-68.
doi: 10.1016/j.agwat.2015.04.010 URL |
[39] |
PHILIPPE H, CLAUDE P, TANG C X, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248(1-2):43-59.
doi: 10.1023/A:1022371130939 URL |
[40] |
ZHAO W, ZHOU Q, TIAN Z Z, et al. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain[J]. Science of the Total Environment, 2020, 722:137428.
doi: 10.1016/j.scitotenv.2020.137428 URL |
[41] | 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望[J]. 世界林业研究, 2018, 31(4):70-75. |
[42] | 李玉, 田宪艺, 王振林, 等. 有机肥替代部分化肥对滨海盐碱地土壤改良和小麦产量的影响[J]. 土壤, 2019, 51(6):1173-1182. |
[43] |
LASHARI M S, YE Y X, JI H S, et al. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment[J]. Journal of the science of food and agriculture, 2015, 95(6):1321-1327.
doi: 10.1002/jsfa.6825 URL |
[44] | 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2):1-7. |
[45] |
KIMETU J M, LEHMANN J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Soil research, 2010, 48(7):577-585.
doi: 10.1071/SR10036 URL |
[46] | 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1):68-79. |
[47] |
SLAVICH P G, SINCLAIR K, MORRIS S G, et al. Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture[J]. Plant and soil, 2013, 366(1/2):213-227.
doi: 10.1007/s11104-012-1412-3 URL |
[48] |
ALI M A, AJAZ M M, RIZWAN M, et al. Effect of biochar and phosphate solubilizing bacteria on growth and phosphorus uptake by maize in an Aridisol[J]. Arabian Journal of Geosciences, 2020, 13(9):1-9.
doi: 10.1007/s12517-019-5007-7 URL |
[49] |
YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil use and management, 2011, 27:110-115.
doi: 10.1111/sum.2011.27.issue-1 URL |
[50] | 刘泽霞. 生物炭和环保酵素联合对盐碱土改良效果的研究[D]. 呼和浩特:内蒙古科技大学, 2019:17-21. |
[51] | SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A Review of Biochar and Its Use and Function in Soil[J]. Advances in agronomy, 2010, 105:47-82. |
[52] |
LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota-A review[J]. Soil biology and biochemistry, 2011, 43(9):1812-1836.
doi: 10.1016/j.soilbio.2011.04.022 URL |
[53] |
SONG Y J, ZHANG X L, MA B, et al. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil[J]. Biology and fertility of soils, 2014, 50(2):321-332.
doi: 10.1007/s00374-013-0857-8 URL |
[54] |
GUL S, WHALEN J K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils[J]. Soil biology and biochemistry, 2016, 103:1-15.
doi: 10.1016/j.soilbio.2016.08.001 URL |
[55] | 陈斐杰. 互花米草和芦苇生物质炭制备特征及其对盐碱土壤的改良效果[D]. 天津:天津理工大学, 2021:35-47. |
[56] |
SUN J k, HE L, LI T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress[J]. PloS one, 2019, 14(7):e0220340.
doi: 10.1371/journal.pone.0220340 URL |
[57] | 姚淑姣. 醋糟和粉煤灰对苏打盐碱土的改良效果研究[D]. 太古:山西农业大学, 2016:4-5. |
[58] | BORCHARD N, SIEMENS J, LADD B, et al. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice[J]. Soil & tillage research, 2014, 144:184-194. |
[59] |
SMIDER B, SINGH B. agronomic performance of a high ash biochar in two contrasting soils[J]. Agriculture, ecosystems and environment, 2014, 191:99-107.
doi: 10.1016/j.agee.2014.01.024 URL |
[60] |
ZWIETEN L Van, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and soil, 2010, 327(1-2):235-246.
doi: 10.1007/s11104-009-0050-x URL |
[1] | LI Xiaoyu. Cultivation and Product Analysis of Pleurotus eryngii on Phragmites australis Substrates [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 51-55. |
[2] | WU Song, ZHOU Tian, YANG Libin, JIANG Yunbing, PAN Hong, LIU Yongzhi, DU Jun. VOSviewer-Based Visual Analysis on Research Status of Phyllosphere Microorganisms [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 142-150. |
[3] | HONG Ciqing, GUI Fangze, CHEN Fangrong, FANG Yun, YOU Yuxin, GUAN Xiong, PAN Xiaohong. The Adsorption of Heavy Metal Nickel by Biochar Prepared from Tea Residue [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 109-114. |
[4] | ZENG Jie, YU Lang, DABU Xilatu, LI Yunju. Effects of Phosphorus-based Soil Conditioner on Growth of Chinese Cabbage in Low-phosphorus Red Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 81-87. |
[5] | YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41. |
[6] | CAO Qiumei, WANG Luyi, LI Xiaoman, LI Junda, LIU Mengtian, ZHENG Yao, WANG Lihua. Effects of Effective Microorganisms on Growth Performance, Nutrient Digestibility and Fecal Ammonia Emission of BALB/C Mice [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 124-128. |
[7] | LI Dongxue, WANG Yiliu, HUAN Weiwei, BU Lingduo, WANG Ruizhi, LIU Hao, LU Dianjun, WANG Huoyan, CHEN Xiaoqin. Nutrient Content of Tobacco Leaves and Root Zone Soil Affected by Citrate Soluble Potassium Fertilizer in Yuxi [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 67-73. |
[8] | ZHOU Xianlin, QIN Qin, MENG Yongming, WANG Long, HU Chengcheng, ZHU Haiyong, LAI Bo. Effects of Different Amendments on Saline-alkali Soil Improvement and Cotton Growth in Xinjiang [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 91-96. |
[9] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. |
[10] | SHA Yuexia, HUANG Zeyang, WEI Zhaoqing. Impact of Microbial Agent Broadcast Application on Microbial Community Structure of Saline-alkali Soil in Shizuishan of Ningxia [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 82-90. |
[11] | LI Wei, XU Zhonghua, ZHENG Mingjie. Effects of Leaching and Organic Fertilizer on Improvement of Saline-Alkali Soil and Growth of Sapindus mukorossi [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 32-37. |
[12] | MA Yanzhi, QI Kejia, WANG Xiangdong. Effects of Drying Methods on the Quality of Rose ‘Crimson Glory’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 142-146. |
[13] | WANG Lixia, YIN Xiaomin, LIU Yongxia, LIAN Zihao, WANG Bizun, HE Yingdui. Change Characteristics of Microbial Community in the Rhizosphere of Papaya Under Papaya-Leek Intercropping [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 66-76. |
[14] | LIU Qi, GAO Zhiqiang, YANG Zhenping, QIAO Yuejing. Rational Nitrogen Fertilizer Application Rates Improving the Bacterial Community Structure and Physicochemical Properties of Winter Wheat Tillage Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 77-84. |
[15] | PAN Xue, CAI Liqun, DONG Bo, NIE Guangyun. The Quality Grade and Nutrient Characteristics of Cultivated Land in Pingchuan District [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 118-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||