[1] 温小红,谢明杰,姜健,等.水稻稻瘟病防治方法研究进展[J].中国农学通报,2013,29(3):190-195.
[2] 何秀英,廖耀平,陈钊明,等.水稻稻瘟病抗病育种研究进展与展望[J].广东农业科学,2011,38(1):30-33.
[3] 刘海涛,徐倩,何炜,等.水稻稻瘟病抗性变化及抗性基因克隆的研究进展[J].福建农业学报,2016,31(5):545-552.
[4] Rybka K, Miyamoto M, Ando I, et al. High resolution mapping of the indica-derived rice blast resistance genes II. Pi-ta2 and Pi-ta and a consideration of their origin[J]. Molecular Plant-Microbe Interactions, 1997,10(4):517-524.
[5] Hittalmani S, Parco A, Mew T V, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theoretical and Applied Genetics, 2000,100(7):1121-1128.
[6] Huang C L, Hwang S Y, Chiang Y C, et al. Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon).[J]. Genetics, 2008,179(3):1527-1538.
[7] Wang X, Jia Y, Shu Q, et al. Haplotype diversity at the Pi-ta locus in cultivated rice and its wild relatives.[J]. Phytopathology, 2008, 98(12):1305-1311.
[8] Bryan G T, Wu K S, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000,12(11):2033-2046.
[9] 时克,雷财林,程治军,等.稻瘟病抗性基因Pita和Pib在我国水稻主栽品种中的分布[J].植物遗传资源学报,2009,10(1):21-26.
[10] Kiyosawa S. An attempt of classification of world''s rice varieties based on reaction pattern to blast fungus strains[J]. Bulletin of the National Institute of Agrobiological Resources, 1986,2:13-39.
[11] 袁坤.稻瘟病新抗性基因Pita2候选基因的功能研究[D].武汉:中南 民族大学,2013.
[12] 梁华兵.水稻稻瘟病抗性基因Pita2与白叶枯病抗性基因Xa31(t)物理图谱的构建及候选基因验证[D].武汉:中南民族大学,2015.
[13] 单奇伟,高彩霞.植物基因组编辑及衍生技术最新研究进展[J].遗传,2015,37(10):953-973.
[14] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes.[J]. Nature Biotechnology, 2014,32(4):347-55.
[15] Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system.[J]. Nature Biotechnology, 2013,31(8):686-688.
[16] Cong L, Ran F A, Cox D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems[J]. Science, 2013,339(6121):197-217.
[17] Wang H, Yang H, Shivalila C S, et al. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering[J]. Cell, 2013,153(4):910-918.
[18] Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system.[J]. Proceedings of the National Academy of Science, 2015,112(11):3570-3575.
[19] Zhou H, Liu B, Weeks D P, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Research, 2014,42(17):10903-10914.
[20] Zhang H, Zhang J, Wei P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal, 2014, 2(6):797-807.
[21] Xing H L, Dong L, Wang Z P, et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology, 2014,14(1):327.
[22] Gao J, Wang G, Ma S, et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum[J]. Plant Molecular Biology, 2015,87(1):99-110.
[23] Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Molecular Plant, 2013,6(6):1975-1983.
[24] Wang C, Lan S, Fu Y, et al. A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice[J]. Journal of Genetics and Genomics, 2015,42(12):703-706.
[25] Feng Z, Mao Y, Xu N, et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(12):4632-4637.
[26] Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nature Protocol, 2013,8(11):2281-2308.
|