Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (20): 28-35.doi: 10.11924/j.issn.1000-6850.casb20190400042
Special Issue: 玉米
Previous Articles Next Articles
Wang Jiawang1,2, Yang Xiaofeng1,2, Liu Guoming1,2, Ge Jingping1,2()
Received:
2019-04-23
Revised:
2019-06-24
Online:
2020-07-15
Published:
2020-07-20
Contact:
Ge Jingping
E-mail:gejingping@126.com
CLC Number:
Wang Jiawang, Yang Xiaofeng, Liu Guoming, Ge Jingping. Corncob Hemicellulose Hydrolysate: Optimized Pretreatment and Detoxification Process[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 28-35.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190400042
氨水浓度 | 物质种类 | ||||
---|---|---|---|---|---|
葡萄糖 | 木糖 | 阿拉伯糖 | 乙酸 | 糠醛 | |
0%氨水 | 0.24 | 6.22 | 0.36 | 0.41 | 0.037 |
2%氨水 | 0.17 | 1.91 | 0.10 | 0.035 | 0.011 |
5%氨水 | 0.20 | 1.53 | 0.49 | 0.033 | 0.002 |
8%氨水 | 0.52 | 3.63 | 0.42 | 0.035 | 0 |
10%氨水 | 0.13 | 5.77 | 0.30 | 0.006 | 0 |
15%氨水 | 0.09 | 3.55 | 0.06 | 0.0057 | 0 |
18%氨水 | 0.10 | 2.74 | 0.07 | 0 | 0 |
氨水浓度 | 物质种类 | ||||
---|---|---|---|---|---|
葡萄糖 | 木糖 | 阿拉伯糖 | 乙酸 | 糠醛 | |
0%氨水 | 0.24 | 6.22 | 0.36 | 0.41 | 0.037 |
2%氨水 | 0.17 | 1.91 | 0.10 | 0.035 | 0.011 |
5%氨水 | 0.20 | 1.53 | 0.49 | 0.033 | 0.002 |
8%氨水 | 0.52 | 3.63 | 0.42 | 0.035 | 0 |
10%氨水 | 0.13 | 5.77 | 0.30 | 0.006 | 0 |
15%氨水 | 0.09 | 3.55 | 0.06 | 0.0057 | 0 |
18%氨水 | 0.10 | 2.74 | 0.07 | 0 | 0 |
氨水浓度 | 物质损失率(去除率) | ||||
---|---|---|---|---|---|
葡萄糖损失率 | 木糖损失率 | 阿拉伯糖损失率 | 乙酸去除率 | 糠醛去除率 | |
0%氨水 | 41 | 37 | 50 | 55 | 68 |
2%氨水 | 27 | 10 | 33 | 53 | 56 |
5%氨水 | 27 | 32 | 13 | 66 | 51 |
8%氨水 | 29 | 32 | 16 | 53 | 83 |
10%氨水 | 33 | 13 | 16 | 39 | 76 |
15%氨水 | 37 | 8 | 14 | 51 | 100 |
18%氨水 | 35 | 32 | 18 | 100 | 100 |
氨水浓度 | 物质损失率(去除率) | ||||
---|---|---|---|---|---|
葡萄糖损失率 | 木糖损失率 | 阿拉伯糖损失率 | 乙酸去除率 | 糠醛去除率 | |
0%氨水 | 41 | 37 | 50 | 55 | 68 |
2%氨水 | 27 | 10 | 33 | 53 | 56 |
5%氨水 | 27 | 32 | 13 | 66 | 51 |
8%氨水 | 29 | 32 | 16 | 53 | 83 |
10%氨水 | 33 | 13 | 16 | 39 | 76 |
15%氨水 | 37 | 8 | 14 | 51 | 100 |
18%氨水 | 35 | 32 | 18 | 100 | 100 |
[1] | Li X Y, Xu R, Yang J X, et al. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation[J]. Ind Crop Prod, 2019,130:184-197. |
[2] | Mutsengerere S, Chihobo C H, Musademba D, et al. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass[J]. Renew Sust Energ Rev, 2019,104:328-336. |
[3] |
Wang P, Zhang J, Feng J, et al. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass[J]. Bioresource Technology, 2019,281:217-225.
doi: 10.1016/j.biortech.2019.02.096 URL pmid: 30822643 |
[4] |
Rao L V, Goli J K, Gentela J, et al. Bioconversion of lignocellulosic biomass to xylitol: An overview[J]. Bioresource Technology, 2016,213:299-310.
URL pmid: 27142629 |
[5] |
Shanmugam S, Sun C R, Chen Z C, et al. Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy[J]. Bioresource Technology, 2019,279:149-155.
doi: 10.1016/j.biortech.2019.01.121 URL pmid: 30716607 |
[6] | Zanotti M, Ruan Z H, bustamente M, et al. A sustainable lignocellulosic biodiesel production integrating solar- and bio-power generation[J]. Green Chemistry, 2016,18(18):5059-5068. |
[7] |
Yu J M, Xu Z X, Liu L, et al. Process integration for ethanol production from corn and corn stover as mixed substrates[J]. Bioresource Technology, 2019,279:10-16.
doi: 10.1016/j.biortech.2019.01.112 URL pmid: 30710815 |
[8] |
Cheng W. Preparation and properties of lignocellulosic fiber/CaCO3/thermoplastic starch composites[J]. Carbohydrate Polymers, 2019,211:204-208.
doi: 10.1016/j.carbpol.2019.01.062 URL pmid: 30824080 |
[9] |
Yadav M, Singh A, Balan V, et al. Biological treatment of lignocellulosic biomass by Chaetomium globosporum: Process derivation and improved biogas production[J]. International Journal of Biological Macromolecules, 2019,128:176-183.
doi: 10.1016/j.ijbiomac.2019.01.118 URL pmid: 30684578 |
[10] | Dietrich K, Dumont M J, Del rio L F, et al. Sustainable PHA production in integrated lignocellulose biorefineries[J]. New Biotech, 2019,49:161-168. |
[11] | Wang H, Zhu C, Li D, et al. Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran[J]. Renew Sust Energ Rev, 2019,103:227-247. |
[12] |
Akyol C, Ince O, Bozan M, et al. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: What to expect from anaerobic fungus Orpinomyces sp[J]. Bioresource Technology, 2019,277:1-10.
doi: 10.1016/j.biortech.2019.01.024 URL pmid: 30654102 |
[13] | Becarelli S, Chicca I, Siracusa G, et al. Hydrocarbonoclastic Ascomycetes to enhance co-composting of total petroleum hydrocarbon (TPH) contaminated dredged sediments and lignocellulosic matrices[J]. New Biotech, 2019,50:27-36. |
[14] | Halder P, Kundu S, Patel S, et al. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids[J]. Renew Sust Energ Rev, 2019,105:268-292. |
[15] | Kruyeniski J, Ferreira P J T, Videira sousa carvalho M D G, et al. Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis[J]. Ind Crop Prod, 2019,130:528-536. |
[16] | Kotarska K, Swierczynska A, Dziemianowicz W. Study on the decomposition of lignocellulosic biomass and subjecting it to alcoholic fermentation study on the decomposition of lignocellulosic biomass[J]. Renew Energy, 2015,75:389-394. |
[17] |
Bernardes A, Pellegrini V O A, Curtolo F, et al. Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate[J]. Carbohydrate Polymers, 2019,211:57-68.
doi: 10.1016/j.carbpol.2019.01.108 URL pmid: 30824104 |
[18] |
Coz A, Llano T, Cifrian E, et al. Physico-chemical alternatives in lignocellulosic materials in relation to the kind of component for fermenting purposes[J]. Materials, 2016,9(7):574.
doi: 10.3390/ma9070574 URL |
[19] |
Monlau F, Sambusiti C, Antoniou N, et al. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification[J]. Bioresource Technology, 2015,187:379-386.
doi: 10.1016/j.biortech.2015.03.137 URL pmid: 25863902 |
[20] | 李永莲, 阳元娥, 黎妍文, 等. 不同预处理方法下玉米芯水解效果的比较研究[J]. 中原工学院学报, 2018(4):24-28. |
[21] | 陆佳, 刘伟, 王欣, 等. 碳基固体酸催化剂催化纤维素水解研究进展[J]. 化学工程师, 2018,32(2):51-56. |
[22] | 朱李妍, 杨晓瑞, 王伟, 等. 微波辅助稀酸降解玉米芯的工艺优化及其效果研究[J]. 食品与机械, 2017,33(12):174-179. |
[23] | 徐栋梁, 任浩. 木质素对纤维素酶水解抑制作用的研究进展与展望[J]. 中华纸业, 2017,38(20):19-24. |
[24] |
Xu H F, Che X P, Ding Y, et al. Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis[J]. Bioresource Technology, 2019,279:271-280.
doi: 10.1016/j.biortech.2018.12.096 URL pmid: 30738353 |
[25] | 李菁. 玉米芯的预处理及其产氢工艺研究[D]. 哈尔滨:哈尔滨工业大学, 2016. |
[26] |
Lee K M, Min K, Choi O, et al. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation[J]. Bioresource Technology, 2015,187:228-234.
doi: 10.1016/j.biortech.2015.03.129 URL pmid: 25863199 |
[27] |
Li G, Fu Y, Dang W, et al. The effects of aqueous ammonia-pretreated rice straw as solid substrate on laccase production by solid-state fermentation[J]. Bioprocess and Biosystems Engineering, 2019,42(4):567-574.
doi: 10.1007/s00449-018-02060-y URL pmid: 30652220 |
[28] |
Li J, Zhang M, Wang D H. Enhancing delignification and subsequent enzymatic hydrolysis of corn stover by magnesium oxide-ethanol pretreatment[J]. Bioresource Technology, 2019,279:124-131.
doi: 10.1016/j.biortech.2019.01.123 URL pmid: 30716604 |
[29] |
Liu T, Zhou X Q, Li Z F, et al. Effects of liquid digestate pretreatment on biogas production for anaerobic digestion of wheat straw[J]. Bioresource Technology, 2019,280:345-351.
doi: 10.1016/j.biortech.2019.01.147 URL pmid: 30780094 |
[30] |
Nogueira C D C, De araujo padilha C E, De jesus A A, et al. Pressurized pretreatment and simultaneous saccharification and fermentation with in situ detoxification to increase bioethanol production from green coconut fibers[J]. Ind Crop Prod, 2019,130:259-266.
doi: 10.1016/j.indcrop.2018.12.091 URL |
[31] |
Zabed H M, Akter S, Yun J H, et al. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production[J]. Renew Sust Energ Rev, 2019,105:105-128.
doi: 10.1016/j.rser.2019.01.048 URL |
[32] |
Singh B, Kumar P, Yadav A, et al. Degradation of fermentation inhibitors from lignocellulosic hydrolysate liquor using immobilized bacterium, Bordetella sp. BTIITR[J]. Chem Eng J, 2019,361:1152-1160.
doi: 10.1016/j.cej.2018.12.168 URL |
[33] | 乔慧, 欧阳水平, 刘蕾, 等. 低浓度乙酸预处理玉米芯的工艺研究[J]. 林产化学与工业, 2019,39(1):81-87. |
[34] | 杨盛茹, 邹建, 丁长河, 等. 稀酸预处理玉米芯酶解工艺响应面优化研究[J]. 中国酿造, 2017,36(1):111-115. |
[35] | 戴莉, 刘凯, 韩峰, 等. 高温液态水预处理结合表面活性剂促进纤维素酶水解玉米芯[J]. 石油化工应用, 2018,37(12):92-97. |
[1] | SU Linhe, HUANG Dong, ZENG Weimin, ZHANG Yanlong. Extraction Optimization of Auricularia auricula Lectin and Study on Its Anti-tumor Activity in Vitro [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 143-150. |
[2] | SUN Yu, ZHANG Yongmei, WU Yujun. Recognition of Hemerocallis citrina Leaf Disease Based on PSO and SVM [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 135-140. |
[3] | BAI Wei, HU Yang, HU Qingqing, CUI Jinli, ZHANG Baoying, YANG Sumei. Effect of Main Cultivation Factors on Yield of Oil Sunflower in North Hebei [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 17-22. |
[4] | CAO Yongqing, LIU Yan, ZHANG Lihui, JIN Tingting, REN Jiahong. Pseudomonas fluorescens Strain CLW17: Degradation of Glyphosate and Its Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 108-117. |
[5] | LI Jiahuan, WANG Xiaohui, JIANG Mingguo, SONG Fuqiang, CHANG Wei. Optimization of Culture Medium of Serendipita indica Based on Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 102-109. |
[6] | LV Wei, LI Shengnan, FENG Guojun, YANG Xiaoxu, LIU Chang, YAN Zhishan, LIU Dajun. Physiological and Biochemical Analysis of Exogenous Melatonin for Reducing Propamocarb Residues in Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 107-113. |
[7] | LIU Baohai, LI Xiaojun, GAO Shiwei, WU Licheng, XIAO Minggang. Optimization Analysis of Grain Production Capacity of Heilongjiang Province in 2025 [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 13-20. |
[8] | FAN Xiaodong, ZHANG Yue, WU Zengyou, YONG Cheng, QU Ping, HUANG Hongying, XU Yueding, SUN Enhui. Straw Fiber Pretreated by Microorganism: Pulp Structure, Fiber Morphology and Film-Forming Properties [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 69-77. |
[9] | Zhu Haiyun, Ma Yu, Ke Yang, Li Bo. Optimization of Culture Medium and Fermentation Parameters of Bacillus cereus MA23 Antagonistic to Kiwifruit Canker [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 112-118. |
[10] | Chai Jiaojiao, Yang Liu, Suo Mengmeng. Optimizing the Layout of Rural Residential Area in Ethnic Minority Areas Based on Complex Network-- Taking Liping County in Guizhou Province as an Example [J]. Chinese Agricultural Science Bulletin, 2021, 37(5): 156-164. |
[11] | Cao Jiucai, Wu Hui, Yang Jingbo, Liu Jianzhong. Integrating the Layout of Optimized Automatic Weather Stations into Rural Vitalization and Improving Meteorological Services [J]. Chinese Agricultural Science Bulletin, 2021, 37(4): 91-97. |
[12] | Li Ting, Wang Yue, Liu Zhongshan, Liu Qi, Xu Henan, Li Chongwei. A Novel Low Temperature Cellulose-degrading Strain Streptomyces azureus and Its Enzymatic Production Condition Optimization [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 25-33. |
[13] | Yu Zhenxu, Li Yifan, Qin Guanghua, Song Yumin, Qiao Yuling, Ma Ling. Optimization of Fertilizing Scheme for Fast-growing Plantation of Black Locust Clones [J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 35-40. |
[14] | Ling Jiahui, Liu Hongmei. The Formation of Land Dividends Based on Different Classification Criteria [J]. Chinese Agricultural Science Bulletin, 2021, 37(23): 84-88. |
[15] | Wang Yan, Peng Qiang, Zhao Xiaoming, Yin Heng. Pesticide Residues Biodegradation: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 117-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||