Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (31): 115-120.doi: 10.11924/j.issn.1000-6850.casb20191200938
Special Issue: 玉米
Previous Articles Next Articles
Zhang Baowen1,2(), Wang Chuan1, Yang Chunying2, Wang Laigang2(
)
Received:
2019-12-11
Revised:
2020-02-18
Online:
2020-11-05
Published:
2020-11-20
Contact:
Wang Laigang
E-mail:805361727@qq.com;wlaigang@sina.com
CLC Number:
Zhang Baowen, Wang Chuan, Yang Chunying, Wang Laigang. Corn Price Prediction Based on Time Series SVR Model[J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 115-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191200938
序号 | 真实值/(元/t) | 传统SVR模型 | GSCV-SVR模型 | 基于时间序列SVR模型 | |||||
---|---|---|---|---|---|---|---|---|---|
预测值/(元/t) | 相对误差(RE) | 预测值/(元/t) | 相对误差(RE) | 预测值/(元/t) | 相对误差(RE) | ||||
1 | 1685.000 | 1663.000 | 0.013 | 1682.000 | 0.002 | 1688.833 | 0.002 | ||
2 | 1667.778 | 1698.000 | 0.018 | 1670.000 | 0.001 | 1725.291 | 0.034 | ||
3 | 1620.000 | 1683.880 | 0.039 | 1665.374 | 0.028 | 1620.100 | 0.000 | ||
4 | 1628.182 | 1634.861 | 0.004 | 1619.661 | 0.005 | 1627.169 | 0.001 | ||
5 | 1658.214 | 1644.497 | 0.008 | 1636.758 | 0.013 | 1721.461 | 0.038 | ||
6 | 1726.875 | 1675.387 | 0.030 | 1665.939 | 0.035 | 1727.007 | 0.000 | ||
7 | 1757.500 | 1746.051 | 0.007 | 1736.281 | 0.012 | 1755.612 | 0.001 | ||
8 | 1827.679 | 1776.178 | 0.028 | 1759.526 | 0.037 | 1827.049 | 0.000 | ||
9 | 1870.000 | 1848.683 | 0.011 | 1841.306 | 0.015 | 1872.285 | 0.001 | ||
10 | 1870.000 | 1890.638 | 0.011 | 1882.401 | 0.007 | 1872.285 | 0.001 | ||
11 | 1850.000 | 1889.026 | 0.021 | 1873.450 | 0.013 | 1849.547 | 0.000 | ||
12 | 1850.000 | 1868.108 | 0.010 | 1847.418 | 0.001 | 1849.547 | 0.000 | ||
13 | 1845.789 | 1868.875 | 0.013 | 1851.522 | 0.003 | 1846.541 | 0.000 | ||
14 | 1840.000 | 1864.470 | 0.013 | 1846.071 | 0.003 | 1840.310 | 0.000 | ||
15 | 1868.333 | 1858.570 | 0.005 | 1839.461 | 0.015 | 1868.104 | 0.000 | ||
16 | 1916.667 | 1888.437 | 0.015 | 1877.597 | 0.020 | 1935.279 | 0.010 | ||
17 | 1901.765 | 1937.917 | 0.019 | 1936.164 | 0.018 | 1903.316 | 0.001 | ||
18 | 1884.286 | 1920.289 | 0.019 | 1905.228 | 0.011 | 1909.223 | 0.013 | ||
19 | 1880.000 | 1902.665 | 0.012 | 1885.417 | 0.003 | 1900.987 | 0.011 | ||
20 | 1889.444 | 1898.911 | 0.005 | 1884.237 | 0.003 | 1911.900 | 0.012 | ||
21 | 1890.000 | 1908.964 | 0.010 | 1896.717 | 0.004 | 1911.738 | 0.012 | ||
22 | 1906.667 | 1909.156 | 0.001 | 1895.982 | 0.006 | 1907.163 | 0.000 | ||
23 | 1947.895 | 1926.560 | 0.011 | 1916.983 | 0.016 | 1950.488 | 0.001 |
序号 | 真实值/(元/t) | 传统SVR模型 | GSCV-SVR模型 | 基于时间序列SVR模型 | |||||
---|---|---|---|---|---|---|---|---|---|
预测值/(元/t) | 相对误差(RE) | 预测值/(元/t) | 相对误差(RE) | 预测值/(元/t) | 相对误差(RE) | ||||
1 | 1685.000 | 1663.000 | 0.013 | 1682.000 | 0.002 | 1688.833 | 0.002 | ||
2 | 1667.778 | 1698.000 | 0.018 | 1670.000 | 0.001 | 1725.291 | 0.034 | ||
3 | 1620.000 | 1683.880 | 0.039 | 1665.374 | 0.028 | 1620.100 | 0.000 | ||
4 | 1628.182 | 1634.861 | 0.004 | 1619.661 | 0.005 | 1627.169 | 0.001 | ||
5 | 1658.214 | 1644.497 | 0.008 | 1636.758 | 0.013 | 1721.461 | 0.038 | ||
6 | 1726.875 | 1675.387 | 0.030 | 1665.939 | 0.035 | 1727.007 | 0.000 | ||
7 | 1757.500 | 1746.051 | 0.007 | 1736.281 | 0.012 | 1755.612 | 0.001 | ||
8 | 1827.679 | 1776.178 | 0.028 | 1759.526 | 0.037 | 1827.049 | 0.000 | ||
9 | 1870.000 | 1848.683 | 0.011 | 1841.306 | 0.015 | 1872.285 | 0.001 | ||
10 | 1870.000 | 1890.638 | 0.011 | 1882.401 | 0.007 | 1872.285 | 0.001 | ||
11 | 1850.000 | 1889.026 | 0.021 | 1873.450 | 0.013 | 1849.547 | 0.000 | ||
12 | 1850.000 | 1868.108 | 0.010 | 1847.418 | 0.001 | 1849.547 | 0.000 | ||
13 | 1845.789 | 1868.875 | 0.013 | 1851.522 | 0.003 | 1846.541 | 0.000 | ||
14 | 1840.000 | 1864.470 | 0.013 | 1846.071 | 0.003 | 1840.310 | 0.000 | ||
15 | 1868.333 | 1858.570 | 0.005 | 1839.461 | 0.015 | 1868.104 | 0.000 | ||
16 | 1916.667 | 1888.437 | 0.015 | 1877.597 | 0.020 | 1935.279 | 0.010 | ||
17 | 1901.765 | 1937.917 | 0.019 | 1936.164 | 0.018 | 1903.316 | 0.001 | ||
18 | 1884.286 | 1920.289 | 0.019 | 1905.228 | 0.011 | 1909.223 | 0.013 | ||
19 | 1880.000 | 1902.665 | 0.012 | 1885.417 | 0.003 | 1900.987 | 0.011 | ||
20 | 1889.444 | 1898.911 | 0.005 | 1884.237 | 0.003 | 1911.900 | 0.012 | ||
21 | 1890.000 | 1908.964 | 0.010 | 1896.717 | 0.004 | 1911.738 | 0.012 | ||
22 | 1906.667 | 1909.156 | 0.001 | 1895.982 | 0.006 | 1907.163 | 0.000 | ||
23 | 1947.895 | 1926.560 | 0.011 | 1916.983 | 0.016 | 1950.488 | 0.001 |
[1] | 王东杰. 大数据视角下的粮食安全预警研究[D]. 北京:中国农业科学院研究生院, 2017. |
[2] | 许世卫. 农业大数据与农产品监测预警[J]. 中国农业科技导报, 2014,16(5):14-20. |
[3] | 许世卫. 中国农业监测预警的研究进展与展望[J]. 农学学报, 2018,8(1):203-208. |
[4] | 李哲敏, 任育锋, 彭春燕. 大数据时代的澳大利亚农业信息监测预警体系[J]. 世界农业, 2015(10):27-32,245. |
[5] | Moore, Henry Ludwell. Forecasting the Yield and the Price of Cotton[M]. New York: The Macaillan Company, 1917: 21. |
[6] | Jadhav V, Reddy BVC, Gaddi G M. Application of ARIMA Model for Forecasting Agricultural Prices[J]. Journal of Agricultural Science and Technology, 2017,19(5):981-992. |
[7] | Puchalsky Weslly, Ribeiro Gabriel Trierweiler, daVeiga Claudimar Pereira, et al. Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand[J]. International Journal of Production Economics, 2018,203:174-189. |
[8] | Mitra Dipankar, Paul Ranjit Kumar, Paul A K. Statistical modelling for forecasting volatility in potato prices using ARFIMA-FIGARCH model[J]. Indian Journal of Agricultural Sciences, 2018,88(2):268-272. |
[9] | 程贤禄. 北京市农产品批发市场蔬菜价格预测预报体系研究[J]. 北京农业科学, 2002(2):1-10. |
[10] | 李哲敏, 许世卫, 崔利国, 等. 基于动态混沌神经网络的预测研究——以马铃薯时间序列价格为例[J]. 系统工程理论与实践, 2015,35(8):2083-2091. |
[11] | 黄彭, 郝妙, 杜永华, 等 基于GM(1,1)模型的四川粮食产量预测研究[J]. 农学学报,2017(10). |
[12] | 刘峰, 王儒敬, 李传席. ARIMA模型在农产品价格预测中的应用[J]. 计算机工程与应用, 2009(25):242-243,252. |
[13] | 任青山, 方逵, 朱幸辉. 基于多元回归的BP神经网络生猪价格预测模型[J]. 江苏农业科学, 2019(14). |
[14] | Lee Hyungyong, Hong Seungjee. Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH[J]. Korean Journal of Agricultural Science, 2018,45(4):859-870. |
[15] | Yashavanth B S, Singh K N, Paul A K, et al. Forecasting prices of coffee seeds using Vector Autoregressive Time Series Model[J]. Indian Journal of Agricultural Sciences, 2017,87(6):754-758. |
[16] | 李海生. 支持向量机回归算法与应用研究[D]. 广州:华南理工大学, 2005. |
[17] | 谢永华, 张鸣敏, 杨乐, 等. 基于支持向量机回归的城市PM2.5浓度预测[J]. 计算机工程与设计, 2015(11):3106-3111. |
[18] | Takens F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981,898(1):366-381. |
[19] | 张淑清, 贾健, 高敏, 等. 混沌时间序列重构相空间参数选取研究[J]. 物理学报, 2010(3). |
[20] | Cheng Anyu, Jiang Xiao, Li Y F, et al. Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method[J]. Physica Astatistical Mechanics and Its Applications, 2017,466:422-434. |
[21] | 徐自励, 王一扬, 周激流. 估计非线性时间序列嵌入延迟时间和延迟时间窗的C-C平均方法[J]. 四川大学学报:工程科学版, 2007,39(1):151-155. |
[22] | Delafrouz Hadi, Ghaheri Abbas, Ghorbani M A. A novel hybrid neural network based on phase space reconstruction technique for daily river flow prediction[J]. Soft Computing, 2018,22(7):2205-2215. |
[23] |
Su Yingxue, Xu Huan, Yan Lijiao. Support vector machine-based open crop model (SBOCM): Case of rice production in China[J]. Saudi Journal of Biological Sciences, 2017,24(3):537-547.
doi: 10.1016/j.sjbs.2017.01.024 URL pmid: 28386178 |
[24] | 胡瑜, 陈涛. 基于C-C算法的混沌吸引子的相空间重构技术[J]. 电子测量与仪器学报, 2012(5):53-58. |
[25] | Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D, 1997,110(1-2):43-50. |
[26] | 汤荣志, 段会川, 孙海涛. SVM训练数据归一化研究[J]. 山东师范大学学报:自然科学版, 2016(4). |
[27] |
Keerthi S S, Lin C J. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J]. Neural Computation, 2003,15(7):1667-1689.
doi: 10.1162/089976603321891855 URL pmid: 12816571 |
[1] | HU Xinyue, SUN Qian, GULI GULI·Miedi Lihazi. Spatial-temporal Evolution of Normalized Difference Vegetation Index in Burqin County of Xinjiang in Five Years [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 6-11. |
[2] | Yang Guohang, Li Qiong, He Lizhao, Gu Jing, Niu Jing, Zhang Haiou, Zheng Zijian, Zhao Zhen. Study on the Migration, Transformation and Prediction Model of Cadmium in the Whole Growth Stage of Late Rice [J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 1-10. |
[3] | Dai Lei, Wang Zhijie, Zhang Wansheng. Analysis and Prediction of Land Resources Carrying Capacity of Guiyang City from 1998 to 2018 [J]. Chinese Agricultural Science Bulletin, 2021, 37(1): 108-115. |
[4] | Wang Qiujing, Ma Guozhong, Wang Ping, Zhao Kewei, Yang Xiaoqiang, Yu Yingnan, Wang Ming, Jiang Lixia. Three Prediction Methods of Rice Heat Index in Heilongjiang Province: A Comparative Analysis [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 1-7. |
[5] | Tian Yixin, Gao Fengju, Cao Pengpeng, Gao Qi, Li Hongbo. Orthogonal Polynomial Regression: Application in the Prediction Model of High-protein Soybean Fertilization and Economic Benefit [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 31-37. |
[6] | Yang Fanyu, Liu Liming, Yuan Chengcheng. Influencing Factors of Grain Production Fluctuation in Hunan Province: Analysis and Prediction [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 153-160. |
[7] | Fan Jiazhi, Tan Shiqi, Wang Dan, Luo Yu, Zhang Jianjun, Geng Huan. Climate Conditions: Effects on Coupling Relationship Between Meteorological Drought and Agricultural Drought [J]. Chinese Agricultural Science Bulletin, 2020, 36(26): 83-92. |
[8] | Hao Ling, Shi Yimin, Shi Dawei, Gu Chunlei. Grassland Temperature: Application in Frost Forecasting [J]. Chinese Agricultural Science Bulletin, 2020, 36(15): 94-99. |
[9] | Hu Yuanchun, Tai Qingguo, Cui Chen, Li Quanjing, Cui Yunpeng, An Guangchi. Weather Forecasting Model of Pomegranate Fruit Cracking: Based on Logistic Regression Method [J]. Chinese Agricultural Science Bulletin, 2020, 36(1): 117-121. |
[10] | . Winter Wheat Mixed Pixel Decomposition Based on NDVI Time-order Characters and Area Estimation [J]. Chinese Agricultural Science Bulletin, 2019, 35(27): 23-33. |
[11] | . Prediction Model of Rapeseed Yield in Alpine Region: Based on Multiple Regression [J]. Chinese Agricultural Science Bulletin, 2019, 35(14): 32-35. |
[12] | . Prediction of Tobacco Yield in Shaoyang Based on Principal Component Analysis and SVR [J]. Chinese Agricultural Science Bulletin, 2019, 35(13): 152-156. |
[13] | . Rape Florescence in Alpine Region: The Relationship with Meteorological Conditions and Prediction Model [J]. Chinese Agricultural Science Bulletin, 2019, 35(13): 95-99. |
[14] | . Correlation Analysis and Prediction Model of Citrus grandis‘Tomentosa’ Initial Flowering Period and Meteorological Factors [J]. Chinese Agricultural Science Bulletin, 2019, 35(10): 104-107. |
[15] | . Ecological Security Early Warning of Gansu Province [J]. Chinese Agricultural Science Bulletin, 2018, 34(24): 110-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||