Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (1): 147-157.doi: 10.11924/j.issn.1000-6850.casb2020-0202
Previous Articles Next Articles
Wu Hanqing1(), Zhang Baogui1, Wang Xuexia2,3, Cao Bing2,3, Chen Lijuan4, Liu Jie4, Chen Yanhua2,3(
)
Received:
2020-06-23
Revised:
2020-11-09
Online:
2021-01-05
Published:
2020-12-25
Contact:
Chen Yanhua
E-mail:hqwu@cau.edu.cn;yhchen55@126.com
CLC Number:
Wu Hanqing, Zhang Baogui, Wang Xuexia, Cao Bing, Chen Lijuan, Liu Jie, Chen Yanhua. The Method of Literature Retrieval via Biliometric Analysis:Taking Soil Ammonia Volatilization as an Example[J]. Chinese Agricultural Science Bulletin, 2021, 37(1): 147-157.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0202
排序 | 第一作者 | 年份 | 期刊名称 | 论文题目 | 总被引频次 | 年均被引频次 |
---|---|---|---|---|---|---|
1 | Vymazal | 2007 | Science of the Total Environment | Removal of nutrients in various types of constructed wetlands | 1157 | 96.3 |
2 | Ju | 2009 | Proceedings of the National Academy of Sciences of the United States of America | Reducing environmental risk by improving N management in intensive Chinese agricultural systems | 1033 | 103.3 |
3 | Wrage | 2001 | Soil Biology and Biochemistry | Role of nitrifier denitrification in the production of nitrous oxide | 985 | 54.7 |
4 | Liu | 2013 | Nature | Enhanced nitrogen deposition over China | 895 | 149.2 |
5 | Mosier | 1998 | Nutrient Cycling in Agroecosystems | Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology | 794 | 37.8 |
6 | Haynes | 1993 | Advances in Agronomy | Nutrient cycling and soil fertility in the grazed pasture ecosystem | 770 | 29.6 |
7 | Bouwman | 1997 | Global Biogeochemical Cycles | A global high -resolution emission inventory for ammonia | 641 | 29.1 |
8 | Bouwman | 1996 | Nutrient Cycling in Agroecosystems | Direct emission of nitrous oxide from agricultural soils | 537 | 23.3 |
9 | Krupa | 2003 | Environmental Pollution | Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review | 457 | 28.6 |
10 | Di | 2009 | Nature Geoscience | Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils | 442 | 44.2 |
排序 | 第一作者 | 年份 | 期刊名称 | 论文题目 | 总被引频次 | 年均被引频次 |
---|---|---|---|---|---|---|
1 | Vymazal | 2007 | Science of the Total Environment | Removal of nutrients in various types of constructed wetlands | 1157 | 96.3 |
2 | Ju | 2009 | Proceedings of the National Academy of Sciences of the United States of America | Reducing environmental risk by improving N management in intensive Chinese agricultural systems | 1033 | 103.3 |
3 | Wrage | 2001 | Soil Biology and Biochemistry | Role of nitrifier denitrification in the production of nitrous oxide | 985 | 54.7 |
4 | Liu | 2013 | Nature | Enhanced nitrogen deposition over China | 895 | 149.2 |
5 | Mosier | 1998 | Nutrient Cycling in Agroecosystems | Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology | 794 | 37.8 |
6 | Haynes | 1993 | Advances in Agronomy | Nutrient cycling and soil fertility in the grazed pasture ecosystem | 770 | 29.6 |
7 | Bouwman | 1997 | Global Biogeochemical Cycles | A global high -resolution emission inventory for ammonia | 641 | 29.1 |
8 | Bouwman | 1996 | Nutrient Cycling in Agroecosystems | Direct emission of nitrous oxide from agricultural soils | 537 | 23.3 |
9 | Krupa | 2003 | Environmental Pollution | Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review | 457 | 28.6 |
10 | Di | 2009 | Nature Geoscience | Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils | 442 | 44.2 |
文献检索频次 | 剔除的关键词 |
---|---|
第二次 | animal slurry; pig slurry; cattle slurry; nitrification inhibitor; dicyandiamide (DCD); oxidation; archaea; nitrifier denitrification; ammonia oxidizing bacteria; ammonia oxidizing archaea; diversity; abundance; methane emissions; carbon dioxide; greenhouse gas emissions; nitrous oxide emissions; N2O emissions |
第三次 | compensation point; vegetation; fluxes; exchange; nitrogen deposition; dry deposition; atmospheric ammonia; atmosphere; leaves; NH3; forest; United States; deposition; model; acidification; transport; plant; emissions; chemical amendments; runoff; broiler litter; poultry litter; manure; availability; amendments; sulfate; phosphate |
文献检索频次 | 剔除的关键词 |
---|---|
第二次 | animal slurry; pig slurry; cattle slurry; nitrification inhibitor; dicyandiamide (DCD); oxidation; archaea; nitrifier denitrification; ammonia oxidizing bacteria; ammonia oxidizing archaea; diversity; abundance; methane emissions; carbon dioxide; greenhouse gas emissions; nitrous oxide emissions; N2O emissions |
第三次 | compensation point; vegetation; fluxes; exchange; nitrogen deposition; dry deposition; atmospheric ammonia; atmosphere; leaves; NH3; forest; United States; deposition; model; acidification; transport; plant; emissions; chemical amendments; runoff; broiler litter; poultry litter; manure; availability; amendments; sulfate; phosphate |
排序 | 第一作者 | 年份 | 期刊 | 标题 | 总被引频次 | 年均被引频次 |
---|---|---|---|---|---|---|
1 | Haynes | 1993 | Advances in Agronomy | Nutrient cycling and soil fertility in the grazed pasture ecosystem | 770 | 29.6 |
2 | Bouwman | 1997 | Global Biogeochemical Cycles | A global high-resolution emission inventory for ammonia | 641 | 29.1 |
3 | Jones | 2012 | Soil Biology and Biochemistry | Biochar-mediated changes in soil quality and plant growth in a three year field trial | 391 | 55.9 |
4 | Cassman | 1998 | Field Crops Research | Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems | 301 | 14.3 |
5 | Howarth | 2002 | Estuaries | Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals | 285 | 16.8 |
6 | Wassenaar | 1995 | Applied Geochemistry | Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3- | 284 | 11.8 |
7 | Holland | 1999 | Biogeochemistry | Contemporary and pre-industrial global reactive nitrogen budgets | 270 | 13.5 |
8 | Aerts | 1999 | Agriculture, Ecosystems & Environment | Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages | 261 | 13.1 |
9 | Howarth | 2002 | Ambio | Nitrogen use in the United States from 1961-2000 and potential future trends | 228 | 13.4 |
10 | Sims | 1994 | Advances in Agronomy | Poultry waste management: Agricultural and environmental issues | 224 | 9.0 |
排序 | 第一作者 | 年份 | 期刊 | 标题 | 总被引频次 | 年均被引频次 |
---|---|---|---|---|---|---|
1 | Haynes | 1993 | Advances in Agronomy | Nutrient cycling and soil fertility in the grazed pasture ecosystem | 770 | 29.6 |
2 | Bouwman | 1997 | Global Biogeochemical Cycles | A global high-resolution emission inventory for ammonia | 641 | 29.1 |
3 | Jones | 2012 | Soil Biology and Biochemistry | Biochar-mediated changes in soil quality and plant growth in a three year field trial | 391 | 55.9 |
4 | Cassman | 1998 | Field Crops Research | Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems | 301 | 14.3 |
5 | Howarth | 2002 | Estuaries | Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals | 285 | 16.8 |
6 | Wassenaar | 1995 | Applied Geochemistry | Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3- | 284 | 11.8 |
7 | Holland | 1999 | Biogeochemistry | Contemporary and pre-industrial global reactive nitrogen budgets | 270 | 13.5 |
8 | Aerts | 1999 | Agriculture, Ecosystems & Environment | Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages | 261 | 13.1 |
9 | Howarth | 2002 | Ambio | Nitrogen use in the United States from 1961-2000 and potential future trends | 228 | 13.4 |
10 | Sims | 1994 | Advances in Agronomy | Poultry waste management: Agricultural and environmental issues | 224 | 9.0 |
排序 | 第一作者 | 年份 | 期刊 | 标题 | 总被引频次 | 年均被引频次 |
---|---|---|---|---|---|---|
1 | Haynes | 1993 | Advances in Agronomy | Nutrient cycling and soil fertility in the grazed pasture ecosystem | 770 | 29.6 |
2 | Ledgard | 1999 | Journal of Agricultural Science | Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application | 195 | 9.8 |
3 | Mikkelsen | 1978 | Soil Science Society of America Journal | Ammonia volatilization losses from flooded rice soils | 144 | 3.5 |
4 | Bristow | 1992 | Journal of the Science of Food and Agriculture | Nitrogenous constituents in the urine of cattle, sheep and goats | 140 | 5.2 |
5 | Bouwmester | 1985 | Soil Science Society of America Journal | Effect of environmental factors on ammonia volatilization from a urea fertilized soil | 138 | 4.1 |
6 | Vlek | 1979 | Soil Science Society of America Journal | Effect of nitrogen source and management on ammonia volatilization losses from flooded rice- soil systems | 98 | 2.5 |
7 | Witter | 1988 | Biological Wastes | Nitrogen losses during the composting of sewagesludge, and the effectiveness of clay soil, zeolite, and compost in adsorbing the volatilized ammonia | 95 | 3.1 |
8 | Scheerell | 2005 | Phytopathology | Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific northwest compost sources | 89 | 6.4 |
9 | Black | 1987 | Journal of Soil Science | Effect of timing of simulated rainfall on ammonia volatilization from urea, applied to soil of varying moisture content | 88 | 2.8 |
10 | Hungria | 2006 | Canadian Journal of Soil Science | Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield | 86 | 6.6 |
排序 | 第一作者 | 年份 | 期刊 | 标题 | 总被引频次 | 年均被引频次 |
---|---|---|---|---|---|---|
1 | Haynes | 1993 | Advances in Agronomy | Nutrient cycling and soil fertility in the grazed pasture ecosystem | 770 | 29.6 |
2 | Ledgard | 1999 | Journal of Agricultural Science | Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application | 195 | 9.8 |
3 | Mikkelsen | 1978 | Soil Science Society of America Journal | Ammonia volatilization losses from flooded rice soils | 144 | 3.5 |
4 | Bristow | 1992 | Journal of the Science of Food and Agriculture | Nitrogenous constituents in the urine of cattle, sheep and goats | 140 | 5.2 |
5 | Bouwmester | 1985 | Soil Science Society of America Journal | Effect of environmental factors on ammonia volatilization from a urea fertilized soil | 138 | 4.1 |
6 | Vlek | 1979 | Soil Science Society of America Journal | Effect of nitrogen source and management on ammonia volatilization losses from flooded rice- soil systems | 98 | 2.5 |
7 | Witter | 1988 | Biological Wastes | Nitrogen losses during the composting of sewagesludge, and the effectiveness of clay soil, zeolite, and compost in adsorbing the volatilized ammonia | 95 | 3.1 |
8 | Scheerell | 2005 | Phytopathology | Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific northwest compost sources | 89 | 6.4 |
9 | Black | 1987 | Journal of Soil Science | Effect of timing of simulated rainfall on ammonia volatilization from urea, applied to soil of varying moisture content | 88 | 2.8 |
10 | Hungria | 2006 | Canadian Journal of Soil Science | Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield | 86 | 6.6 |
[1] | Briner R B, Denyer D. Systematic review and evidence synjournal as a practice and scholarship tool[J]. Handbook of evidence-based management: Companies, classrooms and research, 2012:112-129. |
[2] | Huang X, Song Y, Li M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012,26(1):B1030. |
[3] |
Kang Y, Liu M, Song Y, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry and Physics, 2016,16(4):2043-2058.
doi: 10.5194/acp-16-2043-2016 URL |
[4] |
Bouwman A F, Lee D S, Asman W A H, et al. A global high-resolution emission inventory for ammonia[J]. Global Biogeochemical Cycles, 1997,11(4):561-587.
doi: 10.1029/97GB02266 URL |
[5] |
Warner J X, Dickerson R R, Wei Z, et al. Increased atmospheric ammonia over the world's major agricultural areas detected from space[J]. Geophysical Research Letters, 2017,44(6):2875-2884.
doi: 10.1002/2016GL072305 URL pmid: 29657344 |
[6] |
Aneja V P, Roelle P A, Murray G C, et al. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment[J]. Atmospheric Environment, 2001,35(11):1903-1911.
doi: 10.1016/S1352-2310(00)00543-4 URL |
[7] |
Aneja V P, Schlesinger W H, Erisman J W. Farming pollution[J]. Nature Geoscience, 2008,1(7):409-411.
doi: 10.1038/ngeo236 URL |
[8] |
Aneja V P, Schlesinger W H, Erisman J W. Effects of agriculture upon the air quality and climate: Research, policy, and regulations[J]. Environmental Science & Technology, 2009,43(12):4234-4240.
URL pmid: 19603628 |
[9] |
Huang S, Lv W, Bloszies S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis[J]. Field Crops Research, 2016,192:118-125.
doi: 10.1016/j.fcr.2016.04.023 URL |
[10] |
Zhou F, Ciais P, Hayashi K, et al. Re-estimating NH3 emissions from Chinese cropland by a new nonlinear model[J]. Environmental Science & Technology, 2015,50(2):564-572.
doi: 10.1021/acs.est.5b03156 URL pmid: 26710302 |
[11] |
Xia, Y Q, Yan, X Y. Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake region of China[J]. Sustainability Science, 2012,7(1):33-44.
doi: 10.1007/s11625-011-0144-2 URL |
[12] |
Ti C, Xia L, Chang S X, et al. Potential for mitigating global agricultural ammonia emission: A meta-analysis[J]. Environmental Pollution, 2019,245:141-148.
doi: 10.1016/j.envpol.2018.10.124 URL pmid: 30415033 |
[13] |
Broadus R N. Toward a definition of “bibliometrics”[J]. Scientometrics, 1987,12(5-6):373-379.
doi: 10.1007/BF02016680 URL |
[14] |
Bar-Ilan J. Which H-index?- A comparison of WoS, Scopus and Google Scholar[J]. Scientometrics, 2008,74(2):257-271.
doi: 10.1007/s11192-008-0216-y URL |
[15] | R Core Team. R: A language and environment for statistical computing[Z]. Vienna, Austria, 2016. |
[16] |
Massimo A, Corrado C. bibliometrix: An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 2017,11(4):959-975.
doi: 10.1016/j.joi.2017.08.007 URL |
[17] |
戴培超, 张绍良, 刘润, 等. 生态系统文化服务研究进展——基于Web of Science分析[J]. 生态学报, 2019,39(5):1863-1875.
doi: 10.5846/stxb201712262325 URL |
[18] |
张玲玲, 巩杰, 张影. 基于文献计量分析的生态系统服务研究现状及热点[J]. 生态学报, 2016,36(18):5967-5977.
doi: 10.5846/stxb201504060688 URL |
[19] |
田亚平, 常昊. 中国生态脆弱性研究进展的文献计量分析[J]. 地理学报, 2012,67(11):1515-1525.
doi: 10.11821/xb201211008 URL |
[20] | 刘秋霞, 吴汉卿, 黄正来. 基于全球文献计量的小麦响应气候变暖的研究[J]. 中国农学通报, 2019,35(23):142-151. |
[21] | 孙波, 王晓玥, 吕新华. 我国60年来土壤养分循环微生物机制的研究历程——基于文献计量学和大数据可视化分析[J]. 植物营养与肥料学报, 2017,23(6):1590-1601. |
[22] | 张亦涛, 刘宏斌, 雷秋良, 等. 基于全球文献计量的国际农田施氮效应研究[J]. 生态环境学报, 2015,24(8):1415-1424. |
[23] | 宋长青, 谭文峰. 基于文献计量分析的近30年国内外土壤科学发展过程解析[J]. 土壤学报, 2015,52(5):957-969. |
[24] | 胡远妹, 周俊, 刘海龙, 等. 基于Web of Science对土壤重金属污染修复研究的计量分析[J]. 土壤学报, 2018,55(3):707-720. |
[25] | 串丽敏, 郑怀国, 赵同科, 等. 基于Web of Science数据库的土壤污染修复领域发展态势分析[J]. 农业环境科学学报, 2016,35(1):12-20. |
[26] |
高懋芳, 邱建军, 刘三超, 等. 基于文献计量的农业面源污染研究发展态势分析[J]. 中国农业科学, 2014,47(6):1140-1150.
doi: 10.3864/j.issn.0578-1752.2014.06.010 URL |
[27] |
Callon M, Courtial J, Turner W A, et al. From translations to problematic networks: An introduction to co-word analysis[J]. Social Science Information, 1983,22(2):191-235.
doi: 10.1177/053901883022002003 URL |
[28] |
Fruchterman T M J, Reingold E M. Graph drawing by force-directed placement[J]. Software: Practice and Experience, 1991,21(11):1129-1164.
doi: 10.1002/(ISSN)1097-024X URL |
[29] |
van Eck N J, Waltman L. Software survey: VOS viewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010,84(2):523-538.
URL pmid: 20585380 |
[30] | Michael G, Jorg B. Multiple correspondence analysis and related methods[M]. Chapman and Hall/CRC Press, 2006:39-75. |
[31] | Albert G. Nonlinear multivariate analysis[M]. John Wiley & Sons Incorporated, 1991: 320-360. |
[32] |
Cuccurullo C, Aria M, Sarto F. Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains[J]. Scientometrics, 2016,108(2):595-611.
doi: 10.1007/s11192-016-1948-8 URL |
[33] |
Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(9):3041-3046.
doi: 10.1073/pnas.0813417106 URL pmid: 19223587 |
[34] | Haynes R J, Williams P H. Nutrient cycling and soil fertility in the grazed pasture ecosystem[J]. Advances in Agronomy, 1993,49:119-199. |
[35] |
Krupa S V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review[J]. Environmental Pollution, 2003,124(2):179-221.
doi: 10.1016/s0269-7491(02)00434-7 URL pmid: 12713921 |
[36] |
Vymazal J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007,380(1-3):48-65.
doi: 10.1016/j.scitotenv.2006.09.014 URL |
[37] |
Wrage N, Velthof G L, Beusichem M L V, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and Biochemistry, 2001,33(12-13):1723-1732.
doi: 10.1016/S0038-0717(01)00096-7 URL |
[38] |
Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013,494:459-462.
doi: 10.1038/nature11917 URL |
[39] |
Mosier A, Kroeze C, Nevison C, et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology[J]. Nutrient Cycling in Agroecosystems, 1998,52(2-3):225-248.
doi: 10.1023/A:1009740530221 URL |
[40] |
Bouwman A F. Direct emission of nitrous oxide from agricultural soils[J]. Nutrient Cycling in Agroecosystems, 1996,46(1):53-70.
doi: 10.1007/BF00210224 URL |
[41] |
Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009,2(9):621-624.
doi: 10.1038/ngeo613 URL |
[42] |
Cui Z L, Wang G L, Yue S C, et al. Closing the N-use efficiency gap to achieve food and environmental security[J]. Environmental Science & Technology, 2014,48(10):5780-5787.
doi: 10.1021/es5007127 URL pmid: 24742316 |
[43] |
Watson C J, Miller H, Poland P, et al. Soil properties and the ability of the urease inhibitor N-(n-BUTYL) thiophosphoric triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea[J]. Soil Biology and Biochemistry, 1994,26(9):1165-1171.
doi: 10.1016/0038-0717(94)90139-2 URL |
[44] | Zhao M, Tian Y, Ma Y, et al. Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap[J]. Agriculture, Ecosystems & Environment, 2015,203:36-45. |
[45] | Bremner J M, Chai H S. Effects of phosphoroamides on ammonia volatilization and nitrite accumulation in soils treated with urea[J]. Biology and Fertility of Soils, 1989,8(3):227-230. |
[46] |
Antisari L V, Marzadori C, Gioacchini P, et al. Effects of the urease inhibitor N-(n-BUTYL) phosphorothioic triamide in low concentrations on ammonia volatilization and evolution of mineral nitrogen[J]. Biology and Fertility of Soils, 1996,22(3):196-201.
doi: 10.1007/BF00382512 URL |
[47] | Sugden A M. Many factors influence global change[J]. Science, 2019,366:833-835. |
[48] |
Rillig M C, Ryo M, Lehmann A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019,366:886-890.
doi: 10.1126/science.aay2832 URL pmid: 31727838 |
[1] | YE Gengkang, E Shengzhe, CHEN Zhengyu, YUAN Jinhua, LU Gangbin, ZHANG Peng, LIU Yana, ZHAO Tianxin, WANG Yuxuan. The Forms and Classification Methods of Phosphorus in Soil: Research Progress [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 96-102. |
[2] | SU Linhe, HUANG Dong, ZENG Weimin, ZHANG Yanlong. Extraction Optimization of Auricularia auricula Lectin and Study on Its Anti-tumor Activity in Vitro [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 143-150. |
[3] | YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41. |
[4] | ZHANG Mengjia, WEN Fangfang, ZHANG Xuelian, ZHAO Qingchun, GUO Jianming, LIAO Hong, LIU Zifei, ZHU Wen, HAN Bao, GE Yaoke, LIAO Shangqiang, LU Jing. Preliminary Construction and Application of Soil Health Assessment Method of Facility Vegetable Fields on the Field Scale [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 74-79. |
[5] | WU Jiajia, ZHU Jiahong, CAO Aocheng, YAN Dongdong, WANG Qiuxia, ZHANG Chunhua, LI Yuan. Amomum tsao-ko in Yunnan Province: Identification of Major Pathogenic Fungi and Screening of Control Fungicides [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 121-128. |
[6] | LIANG Changmei, WANG Jianwei, WEN Pengfei, YANG Hua. Modelling of High Voltage Electrostatic Field Induced Total Flavan-3-ols Accumulation in Postharvest Grape Berries [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 152-156. |
[7] | HU Yingfeng, XIA Qiping. Comparison of Different Methods of Pollen Viability Determination and Preliminary Study on in Vitro Culture——Taking Yulania cylindrica as an Example [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 43-47. |
[8] | WANG Xiangping, ZHANG Jianhai, FENG Binbin. Optimization of Extraction Technology for Hesperidin and Naringin from Citri medica var. sarcodactylis Under Ultrasonic-Assisted Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 113-119. |
[9] | HUA Limin, LIU Huiying, XUE Yinghao, LAN Xiping, WANG Yitao, CAI Guangxing. Quantitative Assessment on Comprehensive Effects of Mulching Films by Integrated Evaluation Index Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 76-80. |
[10] | ZENG Duanxiang, YU Xiyue, YU Jingwen, JIA Jianping, PENG Deliang, HUANG Wenkun. Detection and Integrated Control Technology of Bursaphelenchus xylophilus [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 86-91. |
[11] | ZHANG Junwei, ZHANG Xiaohu, XU Yucong. Effect of South Schisandra chinensis Ester B-Nisin-KGM Compound Coating Agent on Fresh Meat Preservation [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 120-129. |
[12] | WANG Yinan, WANG Jibin, ZHOU Fei, WANG Wenzhi, ZHANG Jinping, FANG Hong. Preliminary Study on the Bag Material Cultivation Techniques of Poria cocos [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 33-38. |
[13] | LIU Kun, SUN Wensong, SHEN Baoyu, ZHANG Tianjing. Isolation and Identification of Pathogenic Fungi Causing Panax ginseng Root Rot in Xinbin of Liaoning [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 86-91. |
[14] | WANG Huanhuan, YANG Qin, PU Hongmei, HE Jin, CHENG Hua, HAN Min, ZHAO Xuechun, WANG Zhiwei, JIN Baocheng. Accuracy Analysis of Soybean Vegetation Coverage Measurement by Photo Line Transect Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 111-118. |
[15] | MA Yanzhi, QI Kejia, WANG Xiangdong. Effects of Drying Methods on the Quality of Rose ‘Crimson Glory’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 142-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||