Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (8): 17-24.doi: 10.11924/j.issn.1000-6850.casb2021-0831
Previous Articles Next Articles
GONG Yongyong1,2,3(), DUANMU Huizi1,2,3(
)
Received:
2021-08-31
Revised:
2021-11-03
Online:
2022-03-15
Published:
2022-04-06
Contact:
DUANMU Huizi
E-mail:gongyyong@163.com;duanmuhuizi@sina.cn
CLC Number:
GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis[J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0831
基因名 | 转录本编号 | 染色体 | 基因组位置 | 编码区/bp | 蛋白质/aa | 分子量/kDa | 等电点pI |
---|---|---|---|---|---|---|---|
BvTIFY1 | XM_010693544.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY2 | XM_010693545.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY3 | XM_010673165.2 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY4 | XM_019248305.1 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY5 | XM_010673216.2 | 1 | 6072808-6079282 | 894 | 297 | 32.88 | 5.94 |
BvTIFY6 | XM_010673225.2 | 1 | 6072808-6079282 | 888 | 295 | 32.64 | 5.94 |
BvTIFY7 | XM_010672448.2 | 2 | 39383795-39388815 | 1119 | 372 | 39.43 | 8.71 |
BvTIFY8 | XM_010695474.2 | 3 | 1037984-1064949 | 1059 | 352 | 38.47 | 8.49 |
BvTIFY9 | XM_010695475.2 | 3 | 1037984-1064949 | 1056 | 351 | 38.32 | 8.5 |
BvTIFY10 | XM_010695476.2 | 3 | 1037984-1064949 | 1050 | 349 | 38.14 | 8.49 |
BvTIFY11 | XM_010695477.2 | 3 | 1037984-1064949 | 1047 | 348 | 38.01 | 8.49 |
BvTIFY12 | XM_010695478.2 | 3 | 1037984-1064949 | 999 | 332 | 36.2 | 8.78 |
BvTIFY13 | XM_010684365.2 | 6 | 53385701-53390451 | 597 | 198 | 22.26 | 8.61 |
BvTIFY14 | XM_010697784.2 | 7 | 241127-253491 | 900 | 299 | 32.87 | 5.94 |
BvTIFY15 | XM_010686977.2 | 7 | 36091600-36094215 | 777 | 258 | 29.34 | 9.24 |
BvTIFY16 | XM_010688927.2 | 8 | 19534025-19540778 | 1050 | 349 | 36.08 | 8.53 |
BvTIFY17 | XM_010688928.2 | 8 | 19534025-19540778 | 1047 | 348 | 36.01 | 8.53 |
BvTIFY18 | XM_010689246.2 | 8 | 27921059-27923721 | 756 | 251 | 26.84 | 9.9 |
BvTIFY19 | XM_010690498.1 | 9 | 2254102-2256859 | 375 | 124 | 14.16 | 9.18 |
BvTIFY20 | XM_010693082.2 | 9 | 42035878-42046926 | 1062 | 353 | 38.85 | 4.97 |
BvTIFY21 | XM_010668415.1 | Unknown | 29321-30954 | 372 | 123 | 13.71 | 9.21 |
基因名 | 转录本编号 | 染色体 | 基因组位置 | 编码区/bp | 蛋白质/aa | 分子量/kDa | 等电点pI |
---|---|---|---|---|---|---|---|
BvTIFY1 | XM_010693544.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY2 | XM_010693545.2 | 1 | 177868-181625 | 1047 | 348 | 35.97 | 9.47 |
BvTIFY3 | XM_010673165.2 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY4 | XM_019248305.1 | 1 | 6039574-6047256 | 1041 | 346 | 37.72 | 5.74 |
BvTIFY5 | XM_010673216.2 | 1 | 6072808-6079282 | 894 | 297 | 32.88 | 5.94 |
BvTIFY6 | XM_010673225.2 | 1 | 6072808-6079282 | 888 | 295 | 32.64 | 5.94 |
BvTIFY7 | XM_010672448.2 | 2 | 39383795-39388815 | 1119 | 372 | 39.43 | 8.71 |
BvTIFY8 | XM_010695474.2 | 3 | 1037984-1064949 | 1059 | 352 | 38.47 | 8.49 |
BvTIFY9 | XM_010695475.2 | 3 | 1037984-1064949 | 1056 | 351 | 38.32 | 8.5 |
BvTIFY10 | XM_010695476.2 | 3 | 1037984-1064949 | 1050 | 349 | 38.14 | 8.49 |
BvTIFY11 | XM_010695477.2 | 3 | 1037984-1064949 | 1047 | 348 | 38.01 | 8.49 |
BvTIFY12 | XM_010695478.2 | 3 | 1037984-1064949 | 999 | 332 | 36.2 | 8.78 |
BvTIFY13 | XM_010684365.2 | 6 | 53385701-53390451 | 597 | 198 | 22.26 | 8.61 |
BvTIFY14 | XM_010697784.2 | 7 | 241127-253491 | 900 | 299 | 32.87 | 5.94 |
BvTIFY15 | XM_010686977.2 | 7 | 36091600-36094215 | 777 | 258 | 29.34 | 9.24 |
BvTIFY16 | XM_010688927.2 | 8 | 19534025-19540778 | 1050 | 349 | 36.08 | 8.53 |
BvTIFY17 | XM_010688928.2 | 8 | 19534025-19540778 | 1047 | 348 | 36.01 | 8.53 |
BvTIFY18 | XM_010689246.2 | 8 | 27921059-27923721 | 756 | 251 | 26.84 | 9.9 |
BvTIFY19 | XM_010690498.1 | 9 | 2254102-2256859 | 375 | 124 | 14.16 | 9.18 |
BvTIFY20 | XM_010693082.2 | 9 | 42035878-42046926 | 1062 | 353 | 38.85 | 4.97 |
BvTIFY21 | XM_010668415.1 | Unknown | 29321-30954 | 372 | 123 | 13.71 | 9.21 |
[14] |
WHITE D W. PEAPOD regulates lamina size and curvature in rabidopsis[J]. Proc. natl. acad. sci. USA, 2006, 103(35):13238-13243.
doi: 10.1073/pnas.0604349103 URL |
[15] |
BAI Y H, MENG Y J, HUANG D L, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98(2):128-136.
doi: 10.1016/j.ygeno.2011.05.002 URL |
[16] | 刘蕊, 刘乃新, 吴玉梅, 等. 甜菜MYB转录因子生信分析及种子萌发期差异表达[J]. 中国农学通报, 2019, 35(25):54-65. |
[17] | 刘乃新, 吴玉梅. 甜菜ARF基因家族生信分析及种子萌发期差异表达[J]. 中国农学通报, 2020, 36(26):22-28. |
[18] | 韩秉进, 朱向明. 中国甜菜生产发展历程及现状分析[J]. 土壤与作物, 2016, 5(2):91-95. |
[19] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[20] |
KIMOTHO R N, BAILLO E H, ZHANG Z. Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era[J]. Peerj, 2019, 7(1):e7211.
doi: 10.7717/peerj.7211 URL |
[21] |
BOWERS J E, CHAPMAN B A, RONG J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature, 2003, 422(6930):433-438.
doi: 10.1038/nature01521 URL |
[22] |
WANG Y, TANG H, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic acids research, 2012, 40(7):e49.
doi: 10.1093/nar/gkr1293 URL |
[23] |
ZHAO P, WANG D, WANG R, et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress[J]. BMC genomics, 2018, 19(1):61.
doi: 10.1186/s12864-018-4443-1 URL |
[24] |
YANG L, SU D, CHANG X, et al. Phylogenomic Insights into Deep Phylogeny of Angiosperms Based on Broad Nuclear Gene Sampling[J]. Plant communications, 2020, 1(2):100027.
doi: 10.1016/j.xplc.2020.100027 URL |
[25] |
LONG M. Gene Duplication and Evolution[J]. Science, 2001, 293(5535):1551.
doi: 10.1126/science.293.5535.1551a URL |
[26] | 胡利宗, 李超琼, 张雯露, 等. 菜豆TIFY基因的全基因组鉴定与系统进化分析[J]. 分子植物育种, 2020, 18(10):32-40. |
[27] |
WASTERNACK C. Action of jasmonates in plant stress responses and development -Applied aspects[J]. Biotechnology advances, 2014, 32(1):31-39.
doi: 10.1016/j.biotechadv.2013.09.009 URL |
[28] |
SHEARD L B, XU T, MAO H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-AZ co-receptor[J]. Nature, 2010, 468(7322):400-405.
doi: 10.1038/nature09430 URL |
[29] |
ACOSTA I F, GASPERINI D, CHETELAT A, et al. Role of NINJA in root jasmonate signaling[J]. Proc natl acad sci USA, 2013, 110(38):15473-15478.
doi: 10.1073/pnas.1307910110 URL |
[30] | HUANG H, HUA G, LIU B, et al. bHLH13 Regulates Jasmonate-Mediated Defense Responses and Growth[J]. Evolutionary Bioinformatics online, 2018, 14:1-8. |
[31] |
SCHULER M A. Functional genomics of P450s[J]. Annual review of plant biology, 2003, 54(1):629-667.
doi: 10.1146/arplant.2003.54.issue-1 URL |
[1] |
VANHOLME B, GRUNEWALD W, BATEMAN A, et al. The tify family previously known as ZIM[J]. Trends in plant science, 2007, 12(6):239-244.
doi: 10.1016/j.tplants.2007.04.004 URL |
[2] |
杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2020, 36(12):121-128.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0307 |
[3] | NISHII A, TAKEMURA M, FUJITA H, et al. Characterization of a Novel Gene Encoding a Putative Single Zinc-finger Protein, ZIM, Expressed during the Reproductive Phase in Arabidopsis thaliana[J]. Journal of the agricultural chemical society of Japan, 2000, 64(7):1402-1409. |
[4] |
YE H Y, DU H, TANG N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant molecular biology, 2009, 71(3):291-305.
doi: 10.1007/s11103-009-9524-8 URL |
[5] |
ZHANG Y, GAO M, SINGER S D, et al. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape[J]. PLoS one, 2012, 7(9):e44465.
doi: 10.1371/journal.pone.0044465 URL |
[6] |
ZHU D, BAI X, LUO X, et al. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress[J]. Plant cell reports, 2013, 32(2):263-272.
doi: 10.1007/s00299-012-1360-7 URL |
[7] |
EBEL C, BENKEFI A, HANIN M, et al. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance[J]. PloS one, 2018, 13(7):e0200566.
doi: 10.1371/journal.pone.0200566 URL |
[8] |
HEIDARI P, FARAJI S, AHMADIZADEH M, et al. New Insights Into Structure and Function of TIFY Genes in Zea mays and Solanum lycopersicum: A Genome-Wide Comprehensive Analysis[J]. Frontiers in genetics, 2021, 12:657970.
doi: 10.3389/fgene.2021.657970 URL |
[9] |
AMPARO C P, ASTRID N D, ROBIN V B, et al. The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor[J]. PLoS one, 2014, 9(1):e84891.
doi: 10.1371/journal.pone.0084891 URL |
[10] | 魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5):1039-1046. |
[11] |
STASWICK P E. JAZing up jasmonate signaling[J]. Trends in plant science, 2008, 13(2):66-71.
doi: 10.1016/j.tplants.2007.11.011 URL |
[12] |
CHINI A, FONSECA S, FERNANDEZ G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154):666-671.
doi: 10.1038/nature06006 URL |
[13] |
CHUNG H Y, SUNTER G. Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity[J]. Plant molecular biology, 2014, 86(1):185-200.
doi: 10.1007/s11103-014-0222-9 URL |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | CHEN Yinghua, BAI Ruxiao, WANG Juan, ZHANG Xinjiang, LIU Linghui, LIU Xiaolong, FENG Guorui, WEI Changzhou. Foliar Spraying Uniconazole and Boron: Effects on Yield and Sugar Content of Sugar Beet in Taer Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 41-48. |
[3] | WANG Linyu, JIANG Yichen, YU Qingyang, WU Zedong, PI Zhi. Histone Deacetylases (HDACs) Gene Family in Sugar Beet: Identification and Functional Prediction [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 9-16. |
[4] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[5] | WANG Shenghao, YU Bing. Cloning and Bioinformatics Analysis of BvM14-UNG Gene in Sugarbeet M14 Line [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 16-22. |
[6] | LIU Na, HU Huabing, WANG Ronghua, LIU Xiaoyue, LIU Zhaoyang, LIU Xiaohan, WANG Maoqian. Methanol Aging Treatment: Effect on Germination of Sugar Beet Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 28-33. |
[7] | ZHAO Yaru, PI Zhi, LIU Rui, MA Yuyan, WU Zedong. Genetic Diversity Analysis of Monogerm Cytoplasmic Male Sterile Lines and Maintainer Lines of Sugar Beet [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 35-40. |
[8] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. |
[9] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. |
[10] | ZHOU Yanli, LIU Na, YU Lihua, LU Bingfu, ZHANG Wenbin, LIU Xiaoxue. Soil Mechanical Compaction and Its Effect on Crop Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 83-88. |
[11] | ZHANG Qiong, WANG Jinxia, MENG Shiqi, ZHONG Xin’ai, LIU Dali, XING Wang. Sugar Beet Heat-shock Protein Gene BvHSP18.2: Cloning and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 111-118. |
[12] | YANG Ran, XING Wang, LIU Dali, WU Zedong, WANG Maoqian. Initiation Effects of Different Concentrations of Melatonin on Sugar Beet Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 19-25. |
[13] | LIU Danyang, CUI Rufei, GENG Gui, WANG Yuguang. Pathogenic Bacteria of Sugar Beet Blight: Isolation and Identification [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 113-117. |
[14] | ZHANG Ziruo, MA Jiajie, GAO Qiuyu, WU Zedong. Molecular Identity for Sugar Beet Varieties: Establishment Based on DAMD Molecular Marker [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 21-26. |
[15] | LI Wangsheng, WANG Xueqian, YIN Xilong, SHI Yang, XING Wang. Drought Resistance of Sugar Beet Seedling: Identification and Index Screening [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 17-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||