Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (16): 18-26.doi: 10.11924/j.issn.1000-6850.casb2021-0793
Previous Articles Next Articles
WU Ti1(), WEI Xiaoling1, FENG Changqing1, HUANG Yunxia1, XU Shichang1, QIU Fuxiang1, ZHENG Yingjie1, LI Wenqing2, HE Huaqin1(
)
Received:
2021-08-19
Revised:
2022-03-04
Online:
2022-06-05
Published:
2022-06-09
Contact:
HE Huaqin
E-mail:wt983708@163.com;hehq3@fafu.edu.cn
CLC Number:
WU Ti, WEI Xiaoling, FENG Changqing, HUANG Yunxia, XU Shichang, QIU Fuxiang, ZHENG Yingjie, LI Wenqing, HE Huaqin. Identification and Expression Analysis of MRS2/MGT Gene Family in Tobacco[J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 18-26.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0793
基因名 | 上游引物(5'-3') | 下游引物(5'-3') |
---|---|---|
NtMGT1 | GGTTGCCATCTTCGGGGTT | AGCGCTTATTTCCCTCATAGGCTC |
NtMGT2 | GCAGCCGATATACTCCGACCAAAC | ATGACCGTATTCCCGTCCCCTTC |
NtMGT4 | GTGGATCAGGTGCAGCCAGTTG | TGCCCGAAGTAAGCCTCCAATAAC |
NtMGT5 | ATGGGTGGTAATCATTAGTGCTATC | CTTGGATGCTGTATGGTTCCTTTC |
β-actin | GATCTTGCTGGTCGTGATCT | ACTTCCGGACATCTGAACCT |
基因名 | 上游引物(5'-3') | 下游引物(5'-3') |
---|---|---|
NtMGT1 | GGTTGCCATCTTCGGGGTT | AGCGCTTATTTCCCTCATAGGCTC |
NtMGT2 | GCAGCCGATATACTCCGACCAAAC | ATGACCGTATTCCCGTCCCCTTC |
NtMGT4 | GTGGATCAGGTGCAGCCAGTTG | TGCCCGAAGTAAGCCTCCAATAAC |
NtMGT5 | ATGGGTGGTAATCATTAGTGCTATC | CTTGGATGCTGTATGGTTCCTTTC |
β-actin | GATCTTGCTGGTCGTGATCT | ACTTCCGGACATCTGAACCT |
基因名称 | 基因编号 | 转录编号 | 蛋白编号 |
---|---|---|---|
NtMGT1 | 107824590 | XM_016651392.1 | XP_016506878.1 |
NtMGT2 | 107797716 | XM_016620625.1 | XP_016476111.1 |
NtMGT3 | 107775786 | XM_016595567.1 | XP_016451053.1 |
NtMGT4 | 107765702 | XM_016584374.1 | XP_016439860.1 |
NtMGT5-1 | 107778350 | XM_016598596.1 | XP_016454083.1 |
NtMGT5-2 | 107778350 | XM_016598597.1 | XP_016454082.1 |
NtMGT6 | 107825361 | XM_016652209.1 | XP_016507695.1 |
NtMGT7 | 107791732 | XM_016613852.1 | XP_016469338.1 |
基因名称 | 基因编号 | 转录编号 | 蛋白编号 |
---|---|---|---|
NtMGT1 | 107824590 | XM_016651392.1 | XP_016506878.1 |
NtMGT2 | 107797716 | XM_016620625.1 | XP_016476111.1 |
NtMGT3 | 107775786 | XM_016595567.1 | XP_016451053.1 |
NtMGT4 | 107765702 | XM_016584374.1 | XP_016439860.1 |
NtMGT5-1 | 107778350 | XM_016598596.1 | XP_016454083.1 |
NtMGT5-2 | 107778350 | XM_016598597.1 | XP_016454082.1 |
NtMGT6 | 107825361 | XM_016652209.1 | XP_016507695.1 |
NtMGT7 | 107791732 | XM_016613852.1 | XP_016469338.1 |
基因 | 基因编号 | 氨基酸数目 | 分子量/kDa | 结构域 | 等电位点 | 膜螺旋结构数 | 亚细胞定位 |
---|---|---|---|---|---|---|---|
NtMGT1 | 107824590 | 445 | 50.54 | Mrs2_Mfm1p-like | 5.20 | 2 | Plasma membrane |
NtMGT2 | 107797716 | 499 | 54.95 | Mrs2_Mfm1p-like | 4.83 | 2 | Chloroplast |
NtMGT3 | 107775786 | 499 | 54.97 | Mrs2_Mfm1p-like | 4.83 | 2 | Chloroplast |
NtMGT4 | 107765702 | 393 | 44.42 | Mrs2_Mfm1p-like | 5.10 | 3 | Plasma membrane |
NtMGT5 | 107778350 | 393 | 44.42 | Mrs2_Mfm1p-like | 5.10 | 3 | Plasma membrane |
NtMGT6 | 107825361 | 372 | 41.71 | Mrs2_Mfm1p-like | 4.87 | 2 | Chloroplast |
NtMGT7 | 107791732 | 442 | 49.84 | Mrs2_Mfm1p-like | 6.09 | 2 | Plasma membrane |
基因 | 基因编号 | 氨基酸数目 | 分子量/kDa | 结构域 | 等电位点 | 膜螺旋结构数 | 亚细胞定位 |
---|---|---|---|---|---|---|---|
NtMGT1 | 107824590 | 445 | 50.54 | Mrs2_Mfm1p-like | 5.20 | 2 | Plasma membrane |
NtMGT2 | 107797716 | 499 | 54.95 | Mrs2_Mfm1p-like | 4.83 | 2 | Chloroplast |
NtMGT3 | 107775786 | 499 | 54.97 | Mrs2_Mfm1p-like | 4.83 | 2 | Chloroplast |
NtMGT4 | 107765702 | 393 | 44.42 | Mrs2_Mfm1p-like | 5.10 | 3 | Plasma membrane |
NtMGT5 | 107778350 | 393 | 44.42 | Mrs2_Mfm1p-like | 5.10 | 3 | Plasma membrane |
NtMGT6 | 107825361 | 372 | 41.71 | Mrs2_Mfm1p-like | 4.87 | 2 | Chloroplast |
NtMGT7 | 107791732 | 442 | 49.84 | Mrs2_Mfm1p-like | 6.09 | 2 | Plasma membrane |
NtMGT1 | NtMGT2 | NtMGT3 | NtMGT4 | NtMGT5 | NtMGT6 | NtMGT7 | |
---|---|---|---|---|---|---|---|
NtMGT2 | 42.18 | ||||||
NtMGT3 | 42.18 | 88.60 | |||||
NtMGT4 | 44.84 | 38.80 | 40.60 | ||||
NtMGT5 | 44.39 | 39.40 | 40.20 | 39.20 | |||
NtMGT6 | 42.83 | 37.60 | 36.80 | 65.49 | 65.49 | ||
NtMGT7 | 16.96 | 16.23 | 15.23 | 17.23 | 19.24 | 17.88 |
NtMGT1 | NtMGT2 | NtMGT3 | NtMGT4 | NtMGT5 | NtMGT6 | NtMGT7 | |
---|---|---|---|---|---|---|---|
NtMGT2 | 42.18 | ||||||
NtMGT3 | 42.18 | 88.60 | |||||
NtMGT4 | 44.84 | 38.80 | 40.60 | ||||
NtMGT5 | 44.39 | 39.40 | 40.20 | 39.20 | |||
NtMGT6 | 42.83 | 37.60 | 36.80 | 65.49 | 65.49 | ||
NtMGT7 | 16.96 | 16.23 | 15.23 | 17.23 | 19.24 | 17.88 |
处理名称 | 地上部 | 地下部 |
---|---|---|
L600Mg0 | 2.23±0.19e | 1.95±0.18f |
L1200Mg0 | 0.92±0.17f | 1.75±0.20f |
L600Mg12 | 3.62±0.03d | 4.63±0.33d |
L1200Mg12 | 2.25±0.28e | 3.80±0.07e |
L600Mg48 | 6.86±0.27b | 6.16±0.12c |
L1200Mg48 | 5.27±0.01c | 7.76±0.30b |
L600Mg120 | 9.65±0.06a | 9.37±0.31a |
L1200Mg120 | 6.63±0.51b | 9.35±0.40a |
镁供应 | *** | NS |
光强 | *** | *** |
镁供应×光强 | *** | ** |
处理名称 | 地上部 | 地下部 |
---|---|---|
L600Mg0 | 2.23±0.19e | 1.95±0.18f |
L1200Mg0 | 0.92±0.17f | 1.75±0.20f |
L600Mg12 | 3.62±0.03d | 4.63±0.33d |
L1200Mg12 | 2.25±0.28e | 3.80±0.07e |
L600Mg48 | 6.86±0.27b | 6.16±0.12c |
L1200Mg48 | 5.27±0.01c | 7.76±0.30b |
L600Mg120 | 9.65±0.06a | 9.37±0.31a |
L1200Mg120 | 6.63±0.51b | 9.35±0.40a |
镁供应 | *** | NS |
光强 | *** | *** |
镁供应×光强 | *** | ** |
[1] | 邓超, 王能如, 王东胜,等. 烟草镁素营养研究进展[J]. 安徽农业科学杂志, 2008(19):8123-8126. |
[2] | 关广晟. 烟草镁吸收积累规律与调控研究[D]. 湖南农业大学, 2007. |
[3] | MENGUTAY M, CEYLAN Y, KUTMAN U B, et al. Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat[J]. Plant & soil, 2013, 368(1-2):57-72. |
[4] | CAKMAK I. Magnesium in crop production, food quality and human health[J]. Plant & soil, 2013, 368(1):1-4. |
[5] |
HMIEL S P, SNAVELY M D, FLORER J B, et al. Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene[J]. Journal of bacteriology, 1986, 168(3):1444-1450.
doi: 10.1128/jb.168.3.1444-1450.1986 URL |
[6] |
SNAVELY M D, FLORER J B, MILLER C G, et al. Magnesium transport in Salmonella typhimurium: 28Mg2+transport by the CorA, MgtA, and MgtB systems[J]. Journal of bacteriology, 1989, 171(9):4761-4766.
doi: 10.1128/jb.171.9.4761-4766.1989 URL |
[7] |
SMITH R L, THOMPSON L J, MAGUIRE M E. Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmusOF4[J]. Journal of bacteriology, 1995, 177(5):1233-1238.
doi: 10.1128/jb.177.5.1233-1238.1995 URL |
[8] | 王勇军. 甘蔗MGT基因家族鉴定与缺镁胁迫的转录组动力学研究[D]. 福州: 福建农林大学, 2019. |
[9] |
SAITO T, KOBAYASHI N I, TANOI K, et al. Expression and functional analysis of the CorA-MRS2-ALR-type magnesium transporter family in rice[J]. Plant and cell physiology, 2013, 54(10):1673-1683.
doi: 10.1093/pcp/pct112 URL |
[10] |
LI H Y, DU H M, HUANG K F, et al. Identification, and functional and expression analyses of the CorA/MRS2/MGT-type magnesium transporter family in maize[J]. Plant and cell physiology, 2016, 57(6):1153-1168.
doi: 10.1093/pcp/pcw064 URL |
[11] |
ZHANG L, WEN A, WU X Q, et al. Molecular identification of the magnesium transport gene family in Brassica napus[J]. Plant physiology and biochemistry, 2019, 136(6):204-214.
doi: 10.1016/j.plaphy.2019.01.017 URL |
[12] | 阳江华, 秦云霞, 方永军,等. 巴西橡胶树镁离子转运蛋白基因HbMGT10的克隆及表达分析[J]. 热带作物学报, 2016, 37(12):2353. |
[13] |
LI L, TUTONE A F, DRUMMOND R, et al. A novel family of magnesium transport genes in Arabidopsis[J]. The plant cell, 2001, 13(12):2761-2775.
doi: 10.1105/tpc.010352 URL |
[14] | 范才银. 不同施镁水平对烤烟生长发育和产量及质量的影响研究[D]. 长沙: 湖南农业大学, 2007. |
[15] |
CHEN Z C, YAMAJI N, MOTOYAMA R, et al. Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice[J]. Plant physiology, 2012, 159(4):1624-1633.
doi: 10.1104/pp.112.199778 URL |
[16] |
CHEN Z C, YAMAJI N, HORIE T, et al. A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice[J]. Plant physiology, 2017, 174(3):1837-1849.
doi: 10.1104/pp.17.00532 URL |
[17] | WOFFELMAN C. DNAMAN for Windows, Version 5.2.10[Z]. Lynon Biosoft, Institute of Molecular Plant Sciences, Netherlands: Leiden University, 2004. |
[18] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular biology and evolution, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054 URL |
[19] |
LALITHA S. Primer premier 5[J]. Biotech software and internet report, 2000, 1(6):270-272.
doi: 10.1089/152791600459894 URL |
[20] |
WATERS B M. Moving magnesium in plant cells[J]. New phytologist, 2011, 190(3):510-513.
doi: 10.1111/j.1469-8137.2011.03724.x URL |
[21] |
SHIU S H, KARLOWSKI W M, PAN R S, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. The plant cell, 2004, 16(5):1220-1234.
doi: 10.1105/tpc.020834 URL |
[22] |
MARTNEZ M, ABRAHAM Z, CARBONERO P, et al. Comparative phylogenetic analysis of cystatin gene families from Arabidopsis, rice and barley[J]. Molecular genetics and genomics, 2005, 273(5):423-432.
doi: 10.1007/s00438-005-1147-4 URL |
[23] |
GARDNER R C. Genes for magnesium transport[J]. Current opinion in plant biology, 2003, 6(3):263-267.
doi: 10.1016/S1369-5266(03)00032-3 URL |
[24] | 许花, 杨泽峰, 顾世梁. 基因组水平上拟南芥和水稻mrs2基因家族的比较系统发生分析[J]. 中国农业科技导报, 2007, 9(6):56-63. |
[25] |
GEBERT M, MESCHENMOSER K, SVIDOVA S, et al. A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+environments[J]. The plant cell, 2009, 21(12):4018-4030.
doi: 10.1105/tpc.109.070557 URL |
[26] |
DRUMMOND R, TUTONE A, LI Y C, et al. A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system[J]. Plant science, 2006, 170(1):78-89.
doi: 10.1016/j.plantsci.2005.08.018 URL |
[1] | HUANG Hao, XIE Jin, YUAN Wenbin, WANG Chuliang, CHEN Kunhua, ZENG Fandong, LIANG Zengfa, SU Zhao, WANG Wei. Effects of Different Organic Materials on Root Characteristics and Accumulation of Nitrogen, Phosphorus and Potassium in Flue-cured Tobacco [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 51-57. |
[2] | LI Dongxue, WANG Yiliu, HUAN Weiwei, BU Lingduo, WANG Ruizhi, LIU Hao, LU Dianjun, WANG Huoyan, CHEN Xiaoqin. Nutrient Content of Tobacco Leaves and Root Zone Soil Affected by Citrate Soluble Potassium Fertilizer in Yuxi [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 67-73. |
[3] | HAN Min, YANG Pengwu, HE Yuqin, HU Xueqiong, ZHU Yong. Prediction of the Disaster Risk of Overcast and Rainy Days on Flue-cured Tobacco Planting in Yunnan [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 69-75. |
[4] | GUAN Luohao, YANG Xin, LI Chao, ZHANG Yanling, ZHANG Guangfu, LI Yongliang, ZHOU Hanping, WANG Guangshan, ZHONG Shuai, DAI Huaxin. Influence of Remained Leaves on Yield and Quality of Flue-cured Tobacco in Tengchong [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 10-15. |
[5] | HUNAG Lei, LI Yimeng, ZHONG Shuai, JIN Baofeng, GAO Jinjun, WANG Xiaoyuan, GUAN Luohao, WANG Chuliang, HUANG Wanting, LI Min. Changes of Physical and Chemical Indexes of Tobacco Leaves Sealed with Hypoxia After Unsealing [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 107-112. |
[6] | YAN Fangfang, KONG Chuixu, ZHANG Yingjie, MAO Min, JIAN Lianjun, WANG Rong. Biological Control of Tobacco Root-knot Nematode Disease by Penicillium purpurogenum K1 [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 103-108. |
[7] | HOU Jianlin, LI Sijun, HE Mingyu, XIAO Hanqian, XIANG Tiejun, HUANG Jie, LI Wujin, XIAO Yansong, JIANG Zhimin, XU Junhua, DENG Xiaohua. Effects of Different Fertilization Modes on the Growth, Dry Matter Accumulation, Yield and Quality of Paddy-tobacco [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 39-43. |
[8] | ZHANG Zhiling, LIN Haibin, WANG Xinwang, LIN Long, CHEN Xingfeng, GAO Weimin, LIN Zubin, CHEN Qingwen. The Correlation Between the Starch Content and the Appearance Quality and Sensory Quality of Fujian Flue-cured Tobacco [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 136-141. |
[9] | WANG Yuemin, KE Yuqin, XIE Rongrong, LI Chunying, LI Wenqing. Effects of Spraying Microelement-fertilizer on Physiological Metabolism of Tobacco Plant at Mature Stage Under Localized Fertilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 24-30. |
[10] | CHEN Jianfeng, ZHAO Wenjun, FU Libo, YIN Mei, WANG Zhiyuan, WANG Wei, WANG Yingxue, YANG Yanxian, CHEN Hua. Influence of Fertilization System of Nutrient Critical Value for Optimum Yield of Tobacco on Yield and Quality of Flue-cured Tobacco in Yuxi [J]. Chinese Agricultural Science Bulletin, 2022, 38(28): 1-6. |
[11] | ZHAO Wenjun, XUE Kaizheng, YANG Jizhou, HU Baowen, FU Libo, YIN Mei, CHEN Jianfeng, WANG Wei, WANG Zhiyuan, WANG Yingxue, LI Yanrun, CHEN Hua. Green Manure Rotation in Tobacco Field: Effects on the Yield and Quality of Flue-cured Tobacco [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 8-15. |
[12] | WANG Zheng, LIU Jiuyu, KAN Hongwei, HUANG Shaoli, LI Zhi, DONG Shuchao, LIU Yangxu, LI Xiaoting, YANG Xiaobin, LI Xiancai. Effects of Nitrogen Application on Root Morphology and Leaf Quality of ‘Hongda’ Flue-cured Tobacco [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 1-7. |
[13] | SUN Jiping, LI Xuejun, SUN Huan. Response of Signal Molecules and CAT Activities to Aphid in Resistant and Susceptible Tobacco Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 120-124. |
[14] | CAI Yongzhan, WANG Ruibao, BAI Tao, LIU Youcai, HAN Xiaonv, WANG Bin, HUA Xiaobing, LI Cheng, MAO Minglin, ZI Wenlin. Control Effect of Three Bacillus subtilis Strains on Tobacco Powdery Mildew [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 125-129. |
[15] | DONG Shiliang, ZHAN Siwen, HE Jiewang, QIU Tong, ZHANG Xueqiong, LIU Fengfeng. Quality Classification of Flue-cured Tobacco Based on HPLC Fingerprint Technique [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 151-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||