中国农学通报 ›› 2021, Vol. 37 ›› Issue (8): 97-102.doi: 10.11924/j.issn.1000-6850.casb2020-0201
所属专题: 生物技术
杨峰山1,2,3(), 高梦颖1,2,3, 孙丛1,2,3, 王颜波1,2,3, 杨思源1,2,3, 付海燕1,2,3, 刘春光1,2,3(
)
收稿日期:
2020-06-22
修回日期:
2020-08-18
出版日期:
2021-03-15
发布日期:
2021-03-16
通讯作者:
刘春光
作者简介:
杨峰山,男,1973年出生,山东文登人,教授,博士,主要从事作物害虫防治和农田土壤修复研究。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院,Tel:0451-86608586,E-mail: 基金资助:
Yang Fengshan1,2,3(), Gao Mengying1,2,3, Sun Cong1,2,3, Wang Yanbo1,2,3, Yang Siyuan1,2,3, Fu Haiyan1,2,3, Liu Chunguang1,2,3(
)
Received:
2020-06-22
Revised:
2020-08-18
Online:
2021-03-15
Published:
2021-03-16
Contact:
Liu Chunguang
摘要:
旨在阐述除草剂对土壤环境的影响,以期为科学有效地使用除草剂并减轻其对环境的危害,以及为农业生产提供理论依据。分析了施用氯乙酰苯胺类、苯氧乙酸类、二苯醚类以及二硝基苯胺类除草剂的使用情况以及危害,总结了4类除草剂对土壤酶活性的影响,最后提出了关于除草剂降解需要解决的问题并对未来修复除草剂污染的土壤研究趋势进行了展望。
中图分类号:
杨峰山, 高梦颖, 孙丛, 王颜波, 杨思源, 付海燕, 刘春光. 4类除草剂对土壤酶活性的影响研究进展[J]. 中国农学通报, 2021, 37(8): 97-102.
Yang Fengshan, Gao Mengying, Sun Cong, Wang Yanbo, Yang Siyuan, Fu Haiyan, Liu Chunguang. The Effect of Four Herbicides on Soil Enzyme Activity: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 97-102.
[1] | 周浩, 于江辉, 孟秋成, 等. 草铵膦在转基因抗除草剂杂交稻培中的应用效果研究[J]. 作物研究, 2012,26(5):529-529. |
[2] | 侯红彩. 浅谈农业发展中除草剂的危害[J]. 现代农村科技, 2019(3). |
[3] | 张一宾. 历年来农药中销售额上亿美元品种的变化[J]. 营销界:农资与市场, 2014(8):51-54. |
[4] | 张宏军, 崔海兰, 刘丰茂, 等. 除草剂对水体的污染及在土壤中的运移[C]. 农药与环境安全国际学术研讨会, 2003. |
[5] | 张国宾, 冯秀杰, 周星洋, 等. 稻田除草剂残留对后茬作物烟草农艺性状和生理代谢的影响[J]. 华南农业大学学报, 2016,37(1):41-45. |
[6] | 谈嫣蓉. 青藏高原东北缘高寒草甸土壤酶活性及土壤养分的研究[D]. 兰州:兰州大学, 2012. |
[7] |
Rao M A, Scelza R, Acevedo F, et al. Enzymes as useful tools for environmental purposes[J]. Chemosphere, 2014,107(jul.):145-162.
doi: 10.1016/j.chemosphere.2013.12.059 URL |
[8] |
Michele Innangi, Elisa Niro, Rosaria D’Ascoli, et al. Effects of olive pomace amendment on soil enzyme activities[J]. applied soil ecology, 2017,119:242-249.
doi: 10.1016/j.apsoil.2017.06.015 URL |
[9] | Shen G, Lu Y, Zhou Q, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. chemosphere, 2005,61(8):0-1182. |
[10] |
Sukul P. Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues[J]. Soil Biology & Biochemistry, 2006,38(2):320-326.
doi: 10.1016/j.soilbio.2005.05.009 URL |
[11] | Zhang X, Dong W, Dai X, et al. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer[J]. The ence of the Total Environment, 2015,536(dec.1):59-67. |
[12] |
Chen H, Zhuang R, Yao J, et al. A Comparative Study on the Impact of Phthalate Esters on Soil Microbial Activity[J]. Bulletin of Environmental Contamination & Toxicology, 2013,91(2):217-223.
doi: 10.1007/s00128-013-1033-4 URL pmid: 23771311 |
[13] |
Jun, Wang Shenghong, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils[J]. Chemosphere, 2016,151:171-177.
URL pmid: 26938679 |
[14] |
Sun J, Pan L, Li Z, et al. Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity[J]. Environmental Pollution, 2018,243(PT.B):1509-1516.
doi: 10.1016/j.envpol.2018.09.112 URL pmid: 30292159 |
[15] |
Li G D, Conyers M K, Heylar K R, et al. Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia[J]. Geoderma, 2019,338:236-246.
doi: 10.1016/j.geoderma.2018.12.003 URL |
[16] |
Li Z, Cui J, Mi Z, et al. Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops - A global meta-analysis[J]. Science of the Total Environment, 2019,651:1830-1838.
doi: 10.1016/j.scitotenv.2018.10.073 URL |
[17] |
Wen X J, Duan C Q, Zhang D C, Effect of Simulated Acid Rain and Rare Earth Contamination on Soil Enzyme Activities in Rare Earth Ming Area, South Jiangxi, China[J]. Advanced Materials Research, 2012,610-613:2954-2958.
doi: 10.4028/www.scientific.net/AMR.610-613 URL |
[18] |
Orgiazzi A, Dunbar M B, Panagos P, et al. Soil biodiversity and DNA barcodes: opportunities and challenges[J]. Soil Biology and Biochemistry, 2015,80:244-250.
doi: 10.1016/j.soilbio.2014.10.014 URL |
[19] | 柴超, 叶非. 除草剂安全剂对氯乙酰苯胺类除草剂代谢的影响[J]. 农药, 2004,043(006):241-244. |
[20] | 刘惠君. 酰胺类除草剂的生物化学行为以及手性选择性行为研究[D]. 杭州:浙江大学, 2005. |
[21] | Ateeq B, Farah M A, Ahmad W. Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus[J]. ecotoxicol environ saf, 2005,62(3):0-354. |
[22] |
Richard J, Manuela P, Antonella S, et al. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions[J]. Frontiers in Plant Science, 2017,8:1617.
doi: 10.3389/fpls.2017.01617 URL pmid: 28974956 |
[23] | 单敏, 虞云龙, 方华, 等. 丁草胺对土壤微生物数量和酶活性的影响[J]. 农药学学报, 2005,7(4):383-386. |
[24] | 严岩, 文波龙, 徐惠风. 丁草胺对湿地芦苇生长发育及土壤酶活性的影响[J]. 农药学学报, 2015,17(6):674-679. |
[25] | 傅建炜, 李建宇, 史梦竹, 等. 2,4-D二甲胺盐对草鱼、鲢鱼和鲫鱼的急性毒性[J]. 生物安全学报, 2013,22(2):115-118. |
[26] | 范俊. 二氯喹啉酸降解细菌QC06的分离、鉴定及其对烟草药害的生物修复[D]. 长沙:湖南农业大学, 2013. |
[27] | 曹汶龙. 枯草芽孢杆菌过氧化氢酶分子改造及发酵优化[D]. 无锡:江南大学, 2014. |
[28] | 杜俊龙, 孙霞, 李志军, 等. 典型干旱荒漠区枣园土壤有机碳与土壤酶活性变化及相关性研究——以新疆麦盖提县为例[J]. 陕西农业科学, 2016,62(5):1-5,14. |
[29] | 和文祥, 闵红, 王娟, 等. 2,4-D对土壤酶活性的影响[J]. 农业环境科学学报, 2006,25(1):224-228. |
[30] | 杨彩宏, 张妤, 崔烨, 等. 二氯喹啉酸在水旱条件下对土壤酶活性及微生物群落的影响[J]. 广东农业科学, 2015,42(6):74-79. |
[31] | 秦旭. 介绍几种二苯醚类除草剂[J]. 农业知识:致富与农资, 2013(9):35-37,38. |
[32] |
Aldo Laganà, Fago G, Fasciani L, et al. Determination of diphenyl-ether herbicides and metabolites in natural waters using high-performance liquid chromatography with diode array tandem mass spectrometric detection[J]. Analytica Chimica Acta, 2000,414(1-2):79-94.
doi: 10.1016/S0003-2670(00)00813-8 URL |
[33] | 赵欢欢, 徐军, 吴艳兵, 等. 微生物降解二苯醚类除草剂的研究进展[J]. 植物保护, 2014,40(4):9-13,25. |
[34] | 丁光龙, 王佰涛, 郭明程, 等. 除草剂离子液体—氟磺胺草醚高效环保的应用新形式[C]. 第十二届全国杂草科学大会. |
[35] |
Wu X H, Zhang Y, Du P Q, et al. Impact of fomesafen on the soil microbial communities in soybean fields in Northeastern China[J]. Ecotoxicology and Environmental Safety, 2018,148(FEB.):169-176.
doi: 10.1016/j.ecoenv.2017.10.003 URL |
[36] | 张清明. 除草剂氟磺胺草醚对土壤酶、微生物与蚯蚓的生态毒理研究[D]. 泰安:山东农业大学, 2012. |
[37] | 王连军. 高等植物中蔗糖转化酶的研究进展[J]. 徽农业科学, 2014,42(24):8108-8111. |
[38] | 侯文龙, 杨越冬, 杨婷, 等. 固定化脲酶高分子载体材料的研究进展[J]. 现代化工, 2013(9):45-47,49. |
[39] | 珊丹, 何京丽, 邢恩德, 等. 微生物菌肥对草原矿区排土场土壤微生物与土壤酶活性的影响[J]. 水土保持通报, 2017,37(3):81-85. |
[40] | Hussain S, Siddique T, Saleem M, et al. Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions[J]. Advances in Agronomy, 2009,102(1):159-200. |
[41] | 郑景瑶, 王百慧, 岳中辉, 等. 氟磺胺草醚对黑土微生物数量及酶活性的影响[J]. 植物保护学报, 2013(5):86-90. |
[42] |
Zhang Q, Zhu L, Wang J, et al. Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition[J]. Environmental Monitoring and Assessment, 2014,186(5):2801-2812.
doi: 10.1007/s10661-013-3581-9 URL |
[43] |
Hu H Y, Zhou H, Zhou S X, et al. Fomesafen impacts bacterial communities and enzyme activities in the rhizosphere[J]. Environmental Pollution, 2019,253:302-311.
doi: 10.1016/j.envpol.2019.07.018 URL pmid: 31323613 |
[44] | 郑丽英, 张益良, 杨仁斌, 等. 双草醚对土壤呼吸作用及土壤酶活性的影响[J]. 农业环境科学学报, 2007,26(3):1117-1120. |
[45] | 霍江莲. 大豆中二硝基苯胺类除草剂多残留检测技术研究[D]. 北京:中国农业大学, 2006. |
[46] |
Ramakrishna M, Mohan S V, Shailaja S, et al. Identification of metabolites during biodegradation of pendimethalin in bioslurry reactor[J]. Journal of Hazardous Materials, 2008,151(2-3):658-661.
doi: 10.1016/j.jhazmat.2007.06.039 URL pmid: 17683860 |
[47] | 曹敏, 何健, 倪海燕. 二硝基苯胺类除草剂微生物降解研究进展[J]. 微生物学通报, 2020,47(1):282-294. |
[48] |
Serpil, Könen, Tolga. Genotoxicity testing of the herbicide trifluralin and its commercial formulation Treflan using the piscine micronucleus test[J]. Environmental and Molecular Mutagenesis, 2008,49:434-438.
doi: 10.1002/em.20401 URL pmid: 18449930 |
[49] | 高梦鸿, 高乃云, 李军, 等. 水体中氟乐灵的生物毒性和去除研究进展[J]. 四川环境, 2013,32(5):161-166. |
[50] | Roca E, D "Errico E, Izzo A, et al. In vitro saprotrophic basidiomycetes tolerance to pendimethalin[J]. International Biodeterioration & Biodegradation, 2009,63(2):182-186. |
[51] | James E Oliver, 洪露. 来自农药的亚硝胺[J]. 农药译丛, 1981(3):42-46,50. |
[52] | Stanley A. Greene. Sittig`s Handbook of Pesticides and Agricultural Chemicals[J]. sittigs handbook of pesticides & agricultural chemicals, 2005,87(1-4). |
[53] | 刘兴宇, 吴建峰, 戴欣, 等. 微生物降解硝基芳烃化合物的物种多样性及其代谢途径[C] //2005热带亚热带微生物资源的遗传多样性与基因发掘利用研讨会论文集. 2005. |
[54] | 王维静, 杨理程, 苏思文, 等. 氟乐灵对土壤微生物、酶活性及作物生长的影响[J]. 农药, 2017,56(7):484-488. |
[55] | 范君华, 刘明. 氟乐灵的微生物生态效应[J]. 杂草科学, 2007(1):22-25. |
[56] | 胡佳月, 金前, 贾会娟, 等. 二甲戊灵对棉田土壤酶活性的影响[J]. 华南农业大学学报, 2017(3):63-69. |
[57] | 张宏军, 崔海兰, 刘丰茂, 等. 除草剂对水体的污染及在土壤中的运移[C] //农药与环境安全国际学术研讨会. 2003. |
[58] | 范淼珍. 改变微生物群落对典型农田土壤作物生产力的影响[D]. 江苏:南京农业大学, 2014. |
[59] |
Hu G P, Zhao Y, Song F Q, et al. Isolation, identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain, FLQ-11-1[J]. Research in Microbiology, 2014,165(2):110-118.
doi: 10.1016/j.resmic.2013.11.003 URL |
[60] | Lozowicka B, Kaczynski P, Wolejko E, et al. Evaluation of organochlorine pesticide residues in soil and plants from East Europe and Central Asia[J]. Desalination & Water Treatment, 2016,57(3):1310-1321. |
[61] | Datta R, Anand S, Moulick A, et al. How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review[J]. International Agrophysics, 31(2). |
[62] |
张昀, 可欣, 张广才, 等. 乙草胺对土壤脲酶动力学特征的影响[J]. 植物营养与肥料学报, 2012,18(4):915-921.
doi: 10.11674/zwyf.2012.11499 URL |
[1] | 崔莹莹, 周波, 陈义勇, 刘嘉裕, 黎健龙, 唐颢, 唐劲驰. 广东茶区土壤肥力时空变化分析与综合评价[J]. 中国农学通报, 2023, 39(1): 85-95. |
[2] | 曾婕, 余浪, 达布希拉图, 李云驹. 磷基土壤调理剂在低磷红壤上对小白菜生长的影响[J]. 中国农学通报, 2022, 38(9): 81-87. |
[3] | 孙树晴, 丁炜, 孙瑞, 张希财, 兰国玉, 陈伟, 杨川, 吴志祥. 不同林龄橡胶林土壤细菌群落组成及多样性研究[J]. 中国农学通报, 2022, 38(9): 93-100. |
[4] | 叶佩, 刘可群, 申双和, 刘凯文, 刘志雄, 邓艳君. 湖北中稻抽穗开花期高温热害风险分析及区划[J]. 中国农学通报, 2022, 38(8): 110-117. |
[5] | 黄浩, 谢晋, 袁文彬, 王初亮, 陈坤华, 曾繁东, 梁增发, 苏诏, 王维. 不同有机物料对烤烟根系特征及氮磷钾积累量的影响[J]. 中国农学通报, 2022, 38(8): 51-57. |
[6] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[7] | 卢丽兰, 王玉萍, 尹欣幸, 黄英凯, 范海阔. 海南省水果型椰子园土壤养分调查与评价[J]. 中国农学通报, 2022, 38(8): 72-80. |
[8] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[9] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[10] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[11] | 张梦佳, 文方芳, 张雪莲, 赵青春, 郭建明, 廖洪, 刘自飞, 朱文, 韩宝, 葛瑶科, 廖上强, 卢静. 田块尺度设施菜田土壤健康评价方法的初步构建与应用[J]. 中国农学通报, 2022, 38(7): 74-79. |
[12] | 陈慧, 周晓月, 谭诚, 张永春, 汪吉东, 马洪波. 紫云英还田对土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(7): 80-85. |
[13] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[14] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. |
[15] | 张洪芬, 杨丽杰, 赵玉娟, 张峰. 陇东2020年“强凉夏”气候特征及对农业影响分析[J]. 中国农学通报, 2022, 38(5): 117-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||