[1] |
HUANG J H, WANG Z, FAN L, et al. A review of wheat starch analyses: methods, techniques, structure and function[J]. International journal of biological macromolecules, 2022, 203:130-142.
|
[2] |
SARDER R, PINER E, RIOS D C, et al. Copolymers of starch, a sustainable template for biomedical applications: a review[J]. Carbohydrate polymers, 2022, 278:118973.
|
[3] |
SINGLA D, SINGH A, DHULL S B, et al. Taro starch: Isolation, morphology, modification and novel applications concern-a review[J]. International journal of biological macromolecules, 2020, 163:1283-1290.
|
[4] |
ZHONG Y J, XIANG X Y, ZHAO J C, et al. Microwave pretreatment promotes the annealing modification of rice starch[J]. Food chemistry, 2020, 304(30):125432.1-125432.9.
|
[5] |
王可心, 王丽爽, 霍金杰, 等. 挤压螺杆转速对碎米重组米中淀粉多层级结构的影响[J]. 食品科学, 2024(12):212-219.
|
[6] |
王宝石, 谭凤玲, 李光耀, 等. 超声波改性淀粉及其耦合酶解反应的生物学效应[J]. 食品与发酵工业, 2020, 46(23).81-85.
doi: 10.13995/j.cnki.11-1802/ts.024690
|
[7] |
WU Z J, HUANG Y C, XIAO L J, et al. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films[J]. International journal of biological macromolecules, 2019, 123:569-575.
doi: S0141-8130(18)33602-X
pmid: 30439436
|
[8] |
FLORENCIA V, URRIZA M, GARCIA M A. Eco-compatible cassava starch films for fertilizer controlled-release[J]. International journal of biological macromolecules, 2019, 134:302-307.
doi: S0141-8130(19)32265-2
pmid: 31075331
|
[9] |
MOHSEN E, GHOLAMREZA P, REZA B, et al. Poly(lactic acid)/coplasticized thermoplastic starch blend: effect of plasticizer migration on rheological and mechanical properties[J]. Polymers for advanced technologies, 2019, 30(4):839-851.
|
[10] |
KEERATIBURANAAB T, HANSENB A R, SOONTARANON S, et al. Porous rice starch produced by combined ultrasound-assisted ice recrystallization and enzymatic hydrolysis[J]. International journal of biological macromolecules, 2020, 145:100-107.
doi: S0141-8130(19)37421-5
pmid: 31862366
|
[11] |
翟一潭, 柏玉香, 李晓晓, 等. 酶法改性淀粉颗粒的研究进展[J]. 食品科学, 2021, 42(7):319-328.
|
[12] |
TONG Z Y, TONG Y, SHI Y C. Partial swelling of granules enables high conversion of normal maize starch to glucose catalyzed by granular starch hydrolyzing enzyme[J]. Industrial crops and products. 2019, 140:111626.
|
[13] |
曹英, 夏文, 王飞, 等. 物理改性对淀粉特性影响的研究进展[J]. 食品工业科技, 2019, 40(21):315-319.
|
[14] |
DING Y B, LUO F J, LIN Q L. Insights into the relations between the molecular structures and digestion properties of retrograded starch after ultrasonic treatment[J]. Food chemistry, 2019, 294:248-259.
doi: S0308-8146(19)30836-2
pmid: 31126460
|
[15] |
ROMAN L, GOMEZ M, HAMAKER B R, et al. Shear scission through extrusion diminishes inter-molecular interactions of starch molecules during storage[J]. Journal of food engineering, 2018, 238:134-140.
|
[16] |
GUO Z B, ZENG S X, ZHANG Y, et al. The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch[J]. Food hydrocolloids, 2015, 44:285-291.
|
[17] |
TAO Y, YAN B, FAN D M, et al. Structural changes of starch subjected to microwave heating: a review from the perspective of dielectric properties[J]. Trends in food science & technology, 2020, 99:593-607.
|
[18] |
李光耀, 李林波, 杨天佑, 等. 物理场预处理对淀粉改性及其多尺度结构的影响研究进展[J]. 食品与机械, 2021, 37(7):213-218.
|
[19] |
银鹏, 孙悦, 张弛, 等. 表面紫外交联对淀粉塑料性能的影响[J]. 塑料工业, 2018, 46(2):85-87.
|
[20] |
ZHOU X, YE X J, HE J, et al. Effects of electron beam irradiation on the properties of waxy maize starch and its films[J]. International journal of biological macromolecules, 2020, 151:239-246.
doi: S0141-8130(19)37107-7
pmid: 32006580
|
[21] |
UYGUN E, YILDIZ E, SUMNU G, et al. Microwave pretreatment for the improvement of physicochemical properties of carob flour and rice starch-based electrospun nanofilms[J]. Food & bioprocess technology, 2020, 13:838-850.
|
[22] |
COELHO C C S, CERQUEIRA M A, PEREIRA R N, et al. Effect of moderate electric fields in the properties of starch and chitosan films reinforced with microcrystalline cellulose[J]. Carbohydrate polymers, 2017, 174:1181-1191.
doi: S0144-8617(17)30773-7
pmid: 28821043
|
[23] |
GUL K, SINGH A, SONKAWADE R. Physicochemical, thermal and pasting characteristics of gamma irradiated rice starches[J]. international journal of biological macromolecules, 2016, 85:460-466.
doi: 10.1016/j.ijbiomac.2016.01.024
pmid: 26778155
|
[24] |
SHIKU Y, HAMAGUCHI P Y, BENJAKUL S, et al. Effect of surimi quality on properties of edible films based on Alaska Pollack[J]. Food chemistry, 2004, 86(4):493-499.
|
[25] |
钟志君, 周培国, 赵永富, 等. 气氛条件对玉米淀粉辐射改性的影响[J]. 核农学报, 2019, 33(9):1749-1754.
doi: 10.11869/j.issn.100-8551.2019.09.1749
|
[26] |
SHAOY, CEN Y, HE Y, et al. Infrared spectroscopy and chemometrics for the starch and protein prediction in irradiated rice[J]. Food chemistry, 2011, 126(4):1856-1861.
doi: 10.1016/j.foodchem.2010.11.166
pmid: 25213968
|
[27] |
廖娟, 柏宗春. 热塑性辐照玉米淀粉薄膜的制备及表征[J]. 核农学报, 2017, 31(6):1094-1099.
doi: 10.11869/j.issn.100-8551.2017.06.1094
|
[28] |
丁龙龙, 张彦华, 顾继友, 等. 傅里叶变换红外测定氧化淀粉的羧基含量初探[J]. 光谱学与光谱分析, 2014(2):401-404.
|
[29] |
李澧, 朱佳廷, 冯敏, 等. 60Co γ射线辐照-水解法制备多孔玉米淀粉工艺优化[J]. 核农学报, 2014, 28(5):833-838.
doi: 10.11869/j.issn.100-8551.2014.05.0833
|
[30] |
ROBIN J P. Effect of gamma radiation on granular starch using the enzymatic and chromatographic method[J]. Starch, 1978, 30(1):26-30.
|
[31] |
李猛, 何瑰, 程备久, 等. 60Co-γ射线辐照对玉米淀粉特性及降解的影响[J]. 激光生物学报, 2009, 18(2):241-246.
|
[32] |
KIM J K, JO C, PARK H J, et al. Effect of gamma irradiation on the physicochemical properties of a starch-based film[J]. Sciencedirect, 2008, 22:248-254.
|
[33] |
LI L, CHEN H P, WANG M, et al. Development and characterization of irradiated-corn-starch films[J]. Carbohydrate polymers, 2018, 194:395-400.
doi: S0144-8617(18)30446-6
pmid: 29801854
|
[34] |
CIESLA K, SQRTOWSKA B. Modification of the microstructure of the filmws formed by gamma irradiated starch examined by SEM[J]. Radiation physics and chemistry, 2013, 118:87-95.
|
[35] |
廖娟, 柏宗春. 辐照玉米淀粉降解薄膜的制备及性能[J]. 塑料科技, 2017, 45(2):63-67.
|