中国农学通报 ›› 2018, Vol. 34 ›› Issue (3): 58-69.doi: 10.11924/j.issn.1000-6850.casb16120107
所属专题: 生物技术
王勇,包兴涛,赵晓珍,薛伟,陈卓
收稿日期:
2016-12-23
修回日期:
2018-01-06
接受日期:
2017-03-22
出版日期:
2018-02-01
发布日期:
2018-02-01
通讯作者:
王勇
基金资助:
Received:
2016-12-23
Revised:
2018-01-06
Accepted:
2017-03-22
Online:
2018-02-01
Published:
2018-02-01
摘要: 为了创制以尿核苷二磷酸糖基转移酶(UDP-glucosyltransferases, UGT)为靶标的植物激活剂,本文归纳了UGT的结构特征、反应机理,及其参与水杨酸(Salicylic acid, SA)的代谢机制和UGT调控机制。总结了UGT促进SA信号转导通路及诱导植物产生系统性获得性抗性的机制。以Imprimatins和ILA化合物为例,阐述了UGT抑制剂促进植物SA信号转导通路及诱导SAR活性的机制,指出了基于UGT的植物激活剂的开发策略及应用前景。
中图分类号:
王勇,包兴涛,赵晓珍,薛伟,陈卓. 尿核苷二磷酸糖基转移酶及其抑制子在植物激活剂中研究与应用[J]. 中国农学通报, 2018, 34(3): 58-69.
[1]Gianinazzi S, Kassanis B. Virus resistance induced in plants by polyacrylic acid [J]. Journal of General Virology, 1974, 23: 1-9. [2]Watanabe T, Igarashi H, Matsumoto K, et al. The characteristics of probenazole (Oryzemate?) for the control of rice blast [J]. Journal of Pesticide Science, 1977, 2: 291-296. [3]Kunz W, Schurter R, Maetzke T. The chemistry of benzothiadiazole plant activators [J]. Pesticide Science, 1997, 50: 275-282. [4]Tsubata K, Kuroda K, Yamamoto Y, et al. Development of a novel plant activator for rice diseases, tiadinil [J]. Journal of Pesticide Science, 2006, 31: 161-162. [5]Xu, Y, Zhao, Z, Qian, X, et al. Novel, unnatural benzo-1, 2, 3-thiadiazole-7-carboxylate elicitors of taxoid biosynthesis [J]. Journal of Agricultural and Food Chemistry, 2006, 54(23): 8793-8798. [6]Fan Z J, Shi Z G, Zhang H K, et al. Synthesis and biological activity evaluation of 1, 2, 3-thiadiazole derivatives as potential elicitors with highly systemic acquired resistance [J]. Journal of Agricultural and Food Chemistry, 2009, 57(10): 4279-4286. [7]Song B A, Yang S, Jin L H, et al. Environment friendly anti-plant viral agent [M]. Berlin: Springer press, 2009, 234-253. [8]Nakashita H, Yoshioka K, Yasuda M, et al. Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation [J]. Physiological and Molecular Plant Pathology, 2002, 61(4): 197-203. [9]Cao H, Bowling S A, Gordon A S, et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6(11): 1583-1592. [10]Delaney T P, Friedrich L, Ryals J A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6602-6606. [11]Lawton K A, Friedrich L, Hunt M, et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal, 1996, 10(1): 71-82. [12]Tally A, Oostendorp M, Lawton K, et al. Commercial development of elicitors of induced resistance to pathogens. In: Agrawal A A, Tuzun S, Bent E. Induced plant defences against pathogens and herbivores: biochemistry, ecology, and agriculture [M]. American Phytopathological Society, St Paul, MN, USA, 1999, 357-369. [13]Qiu D, Xiao J, Ding X, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling [J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 492-499. [14]Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance [J]. Plant Cell, 2007, 19(6): 2064-2076. [15]Lee H I, Raskin I. Glucosylation of salicylic acid in Nicotiana tabacum Cv. Xanthi-nc. Phytopathology, 1998, 88(7): 692-697. [16]Dean J V, Mills J D. Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism [J]. Physiol Plant, 2004, 120(4): 603-612. [17]Lim E K, Bowles D J. A class of plant glycosyltransferases involved in cellular homeostasis [J]. Embo Journal. 2004, 23(15): 2915-2922. [18]Bowles D, Lim E K, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules [J]. Annual Review of Plant Biology, 2006, 57: 567-597. [19]Noutoshi Y, Okazaki M, Kida T, et al. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis[W][OA] [J]. Plant Cell 2012, 24(9): 3795-3804. [20]Lim, E K, Bowles D J. A class of plant glycosyltransferases involved in cellular homeostasis [J]. Embo Journal, 2004, 23(15): 2915-2922. [21]Radominska-Pandya A, Czernik P J, Little J M, et al. Structural and functional studies of UDP-glucuronosyltransferases [J]. Drug Metabolism Reviews, 1999, 31(4): 817-899. [22]Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family [J]. Trends in Plant Science, 2000, 5(9): 380-386. [23]Jones P, Vogt T. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers [J]. Planta, 2001, 213(2): 164-174. [24]Sandermann H, Pflugmacher S. Taxonomic distribution of plant glucosyltransferases acting on XENOBIOTICSfn1 in honour of professor G. H. neil towers 75TH birthday [J]. Phytochemistry, 1998, 49(2): 507-511. [25]Bowles D, Lim E K, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules [J]. Annual Review of Plant Biology, 2006, 57: 567-597. [26]Lim E K, Ashford D A, Hou B, et al. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides [J]. Biotechnology and Bioengineering, 2004, 87(5): 623-631. [27]Brazier-Hicks M, Offen W A, Gershater M C, et al. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(51): 20238-20243. [28]Poppenberger B, Berthiller F, Lucyshyn D, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2003, 278(48): 47905-47914. [29]Li Y, Baldauf S, Lim E K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2001, 276(6): 4338-4343. [30]Quiel J A, Bender J. Glucose conjugation of anthranilate by the Arabidopsis UGT74F2 glucosyltransferase is required for tryptophan mutant blue fluorescence [J]. Journal of Biological Chemistry, 2003, 278(8): 6275-6281. [31]Cartwright A M, Lim E K, Kleanthous C, et al. A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities [J]. Journal of Biological Chemistry, 2008, 283(23): 15724-15731. [32]Unligil U M, Rini J M. Glycosyltransferase structure and mechanism [J]. Current Opinion in Structural Biology, 2000, 10(5): 510-517. [33]Bourne Y, Henrissat B. Glycoside hydrolases and glycosyltransferases: families and functional modules [J]. Current Opinion in Structural Biology, 2001, 11(5): 593-600. [34]Tarbouriech N, Charnock S J, Davies G J. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases [J]. Journal of Molecular Biology, 2001, 314(4): 655-661. [35]Shao H, He X, Achnine L, et al. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula [J]. Plant Cell, 2005, 17(11): 3141-3154. [36]Offen W, Martinez-Fleites C, Yang M, et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification [J]. Embo Journal, 2006, 25(6): 1396-1405. [37]Li L, Modolo L V, Escamilla-Trevino L L, et al. Crystal structure of Medicago truncatula UGT85H2--insights into the structural basis of a multifunctional (iso) flavonoid glycosyltransferase [J]. Journal of Molecular Biology, 2007, 370(5): 951-963. [38]Modolo L V, Li L, Pan H, et al. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids [J]. Journal of Molecular Biology, 2009, 392(5): 1292-1302. [39]Wang X. Structure, mechanism and engineering of plant natural product glycosyltransferases [J]. FEBS Letters, 2009, 583(20): 3303-3309. [40]Song J T. Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana [J]. Mol Cells, 2006, 22(2): 233-238. [41]Lim E K, Doucet C J, Li Y, et al. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates [J]. Journal of Biological Chemistry, 2002, 277(1): 586-592. [42]Song J T, Koo Y J, Seo H S, Kim M C, Choi Y D, Kim J H. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae [J]. Phytochemistry, 2008, 69(5): 1128-1134. [43]Metraux J P, Ahl Goy P, Staub T, et al. Induced resistance in cucumber in response to 2, 6-dichloroisonicotinic acid and pathogens. In: Hennecke H, Desh-Pal S. Advances in molecular genetics of plant-microbe interaction [M]. Springer, Berlin, Germany, 1991: vol (1): 432-439. [44]Delaney T P, Uknes S, Vernooij B, et al. A central role of salicylic acid in plant disease resistance [J]. Science, 1994, 266(5188): 1247-1250. [45]Dean J V, Mills J D. Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism [J]. Physiologia Plantarum, 2004,120(4): 603-612. [46]Brodersen P, Malinovsky F G, Hematy K, et al. The role of salicylic acid in the induction of cell death in Arabidopsis acd11 [J]. Plant Physiology, 2005, 138(2): 1037-1045. [47]Lee, H I, Raskin I. Glucosylation of salicylic acid in Nicotiana tabacum Cv. Xanthi-nc [J]. Phytopathology, 1998, 88(7): 692-697. [48]Dean J V, Delaney S P. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana [J]. Physiologia Plantarum, 2008, 132(4): 417-425. [49]Seo S, Ishizuka K, Ohashi Y. Induction of salicylic acid β-glucosidase in tobacco leaves by exogenous salicylic acid [J]. Plant and Cell Physiology, 1995, 36(3): 447-453. [50]Dempsey D A, Vlot A C, Wildermuth M C, et al. Salicylic acid biosynthesis and metabolism. In: American Society of Plant Biologists. Arabidopsis Book [M], 2011: 9(e0156), doi: 10.1199/tab.0156. [51]Hennig J, Malamy J, Grynkiewicz G, et al. Interconversion of the salicylic acid signal and its glucoside in tobacco [J]. Plant Journal, 1993, 4(4): 593-600. [52]von Saint Paul V, Zhang W, Kanawati B, et al. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence [J]. Plant Cell, 2011, 23(11): 4124-4145. [53]Korobczak A, Aksamit A, ?ukaszewicz M, et al. The potato glucosyltransferase gene promoter is environmentally regulated [J]. Plant Science 2005, 168(2): 339-348. [54]Yalpani N, Balke N E, Schulz M. Induction of UDP-glucose:salicylic acid glucosyltransferase in Oat roots [J]. Plant Physiology, 1992, 100(3): 1114-1119. [55]Wildermuth M C, Dewdney J, Wu G, et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence [J]. Nature, 2001, 414(6863): 562-565. [56]Enyedi A J, Yalpani N, Silverman P, et al. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(6): 2480-2484. [57]Enyedi A J, Raskin I. Induction of UDP-Glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves [J]. Plant Physiology, 1993, 101(4): 1375-1380. [58]Mackey D, Holt BF 3rd, Wiig A, et al. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis [J]. Cell, 2002, 108(6): 743-754. [59]Menges M, Murray J A. Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant Journal, 2002, 30(2): 203-212. [60]Maor R, Jones A, Nuhse T S, et al. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants [J]. Molecular and Cellular Proteomics, 2007, 6(4): 601-610. [61]Noutoshi Y, Okazaki M, Shirasu K. Imprimatins A and B: novel plant activators targeting salicylic acid metabolism in Arabidopsis thaliana [J]. Plant Signaling Behavior, 2012, 7(12): 1715-1717. [62]Ward E R, Uknes S J, Williams S C, et al. Coordinate gene activity in response to agents that induce systemic acquired resistance [J]. Plant Cell, 1991, 3(10): 1085-1094. [63]Lawton K A, Friedrich L, Hunt M, et al. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway [J]. Plant Journal, 1996, 10(1): 71-82. [64]Midoh N, Iwata M. Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice [J]. Plant and Cell Physiology, 1996, 37(1): 9-18. [65]Yasuda M, Nakashita H, Yoshida S. Tiadinil, a novel class of activator of systemic acquired resistance, induces defense gene expression and disease resistance in tobacco [J]. Journal of Pesticide Science, 2004, 29(1): 46-49. |
[1] | 陈和敏, 肖文芳, 陈和明, 吕复兵, 朱根发, 李宗艳, 李佐. 基于CiteSpace的兰花保鲜研究进展及可视化分析[J]. 中国农学通报, 2023, 39(1): 151-164. |
[2] | 孙歌, 接伟光, 胡崴, 张颖智, 乔巍, 魏丽娜, 姜怡彤, 白莉. 菌根真菌及菌根辅助细菌对农作物发育的影响研究进展[J]. 中国农学通报, 2022, 38(9): 88-92. |
[3] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[4] | 董雨青, 魏雪苹, 强亭燕, 张本刚, 齐耀东, 刘海涛. 简化基因组测序技术在植物遗传分析中的应用[J]. 中国农学通报, 2022, 38(8): 25-32. |
[5] | 李星星, 韩芳, 周雪, 苏乐平, 袁宏安. 富硒谷子研究进展[J]. 中国农学通报, 2022, 38(7): 1-6. |
[6] | 刘鹏, 吴巧花, 舒惠理, 周莉荫, 王小东. 油茶对胁迫因子的响应机制研究进展[J]. 中国农学通报, 2022, 38(7): 24-28. |
[7] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. |
[8] | 杨武广, 王君, 温凯, 仇景涛. 中国稻鳖共作技术研究进展与展望[J]. 中国农学通报, 2022, 38(31): 12-16. |
[9] | 刘小英, 吴碧君, 张游南, 黄飞龙, 刘国强. 基于ISSR标记的龙眼种质资源遗传多样性及亲缘关系分析[J]. 中国农学通报, 2022, 38(31): 60-65. |
[10] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. |
[11] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[12] | 聂晓瑀, 于春静, 卢倩, 崔继哲. 微生物在农作物秸秆好氧堆肥过程中的研究进展[J]. 中国农学通报, 2022, 38(26): 76-81. |
[13] | 麻磊, 黄晓君, Ganbat Dashzebegd, Mungunkhuyag Ariunaad, Tsagaantsooj Nanzadd, Altanchimeg Dorjsuren, 包刚, 佟斯琴, 包玉海, Enkhnasan Davaadorj. 不同遥感传感器监测森林虫害研究进展与展望[J]. 中国农学通报, 2022, 38(26): 91-99. |
[14] | 张紫若, 马佳洁, 高秋雨, 吴则东. 利用DAMD分子标记构建甜菜品种的分子身份证[J]. 中国农学通报, 2022, 38(23): 21-26. |
[15] | 段永红, 余亚莹, 唐潇, 邓晶. 地方农作物种质资源库建设的建议与思考[J]. 中国农学通报, 2022, 38(22): 139-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||