[1] |
马金龙, 刘丽娟, 李小玉, 等. 干旱区绿洲膜下滴灌棉田蒸散过程[J]. 生态学杂, 2015,34(4):974-981.
|
[2] |
新疆维吾尔自治区统计局. 新疆统计年鉴[M]. 北京: 中国统计出版社, 2018: 340-343.
|
[3] |
汤章城. 植物对水分胁迫的反应和适应性[J]. 植物生理学通讯, 1983,3:24-29.
|
[4] |
万华龙, 刘朋程, 刘连涛, 等. 早期适度干旱对棉花产量、纤维品质及水分利用效率影响[J]. 棉花学报, 2018,30(6):464-472.
|
[5] |
刘朋程, 孙红春, 刘连涛, 等. 限量灌溉对不同棉花品种干物质积累分配、产量和水分利用效率的影响[J]. 棉花学报, 2018,30(4):16-325.
|
[6] |
田又升, 谢宗铭, 张建新, 等. 干旱复水对棉花苗期抗氧化系统及光合荧光参数的影响[J]. 干旱地区农业研究, 2016,34(6):209-214.
|
[7] |
Singh S K, Reddy K R. Regulation of photosynjournal, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata L.) under drought[J]. Journal of Photochemistry and Photobiology Biology, 2011,105(1):40-50.
|
[8] |
Chaves M M, Pereira J S, Maroco J, et al. How plants cope with water stress in the field photosynjournal and growth[J]. Ann Bot, 2002,89:907-916.
doi: 10.1093/aob/mcf105
URL
|
[9] |
Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant Cell Environ, 2002,25:275-294.
doi: 10.1046/j.0016-8025.2001.00814.x
URL
|
[10] |
Longenberger P S, Smith C W, Duke S E, et al. Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton[J]. Euphytica, 2009,166(1):25-33.
doi: 10.1007/s10681-008-9820-4
URL
|
[11] |
张秋英, 李发东, 高克昌, 等. 水分胁迫对冬小麦光合能力和产量的影响[J]. 西北植物学报, 2005,25(6):1184-1190.
|
[12] |
薛惠云, 张永江, 刘连涛, 等. 干旱胁迫与复水对棉花叶片光谱、光合和荧光参数的影响[J]. 中国农业科学, 2013,46(11):2386-2393.
|
[13] |
胡宏远, 王振平. 干旱胁迫对赤霞珠葡萄叶片水分及叶绿素荧光参数的影响[J]. 干旱区资源与环境, 2017,31(4):124-130.
|
[14] |
Munns R. Comparative Physiology of salt and water stress[J]. Plant cell and environment, 2002,25:239-250.
doi: 10.1046/j.0016-8025.2001.00808.x
URL
|
[15] |
山仑, 邓西平, 张岁歧. 生物节水研究现状及展望[J]. 中国科学基金, 2006,2:66-71.
|
[16] |
Wu Y J, Cosgrove D J. Adaptation of roots to low water potential by change cell extensibility and cell wall proteins[J]. Journal of experimental Botany, 2000,51:1543-1553.
doi: 10.1093/jexbot/51.350.1543
URL
|
[17] |
胡明芳, 田长彦, 马英杰. 不同水肥条件下棉花苗期的生长、养分吸收与水分利用状况[J]. 干旱地区农业研究, 2002,20(3):35-37.
|
[18] |
闫曼曼, 郑剑超, 张巨松, 等. 蕾期调亏灌溉对海岛棉棉铃发育及产量的影响[J]. 棉花学报, 2015,27(4):354-361.
|
[19] |
罗宏海, 张亚黎, 张旺锋, 等. 新疆滴灌棉花花铃期干旱复水随叶片光合特性及产量的影响[J]. 作物学报, 2008,34(1):171-174.
|
[20] |
何海军, 寇思荣, 王晓娟. 干旱胁迫对不同株型玉米光合特性及产量性状的影响[J]. 干旱地区农业研究, 2011,29(3):63-66.
|
[21] |
韩志平, 张海霞, 张巽, 等. 水分胁迫对黍子幼苗生长和生理特性的影响[J]. 中国农业气, 2019,40(8):502-511.
|
[22] |
Schreiber U, Schliwa U, Bilger W, et al. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynjournal Research, 1986,10:51-62
|
[23] |
Cornic G, Massacci A. Leaf photosynthesis under drought stress[A].// In: Baker N R. Photosynthesis and the Environment[M]. Berlin: Kluwer Academic Publishers, 1996, 347-366.
|
[24] |
Flexas J, Bota J, Galmés J, et al. Keeping a positive carbon balance under adverse conditions: responses of photosynjournal and respiration to water stress[J]. Physiol Plant, 2006,127:343-352.
doi: 10.1111/j.1399-3054.2006.00621.x
URL
|
[25] |
Chaves M M, Flexas J, Pinheiro C. Photosynjournal under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Ann Bot, 2009,103:551-560.
doi: 10.1093/aob/mcn125
URL
|
[26] |
Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water defiits in higher plants[J]. Plant Cell Environ, 2002,25:275-294.
doi: 10.1046/j.0016-8025.2001.00814.x
URL
|
[27] |
Hu Y Y, Zhang Y L, Yi X P, et al. The relative contribution of non-foliar organs of cotton to yield and related physiological characteristics under water defcit[J]. J Integr Agric, 2013,13:975-989.
doi: 10.1016/S2095-3119(13)60568-7
URL
|
[28] |
Ramanjulu S, Sreenivasalu N, Kumar G. Photosynthetic characteristics in mulberry during water stress and rewatering[J]. Photosynthetica, 1998,35(2):259-263.
doi: 10.1023/A:1006919009266
URL
|
[29] |
Kitao M, Lei T T. Circumvention of over-excitation of PSII by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought[J]. Plant Biol, 2007,9:69-76.
doi: 10.1055/s-2006-924280
URL
|
[30] |
Chastain D R, Snider J L, Collins G D, et al. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynjournal by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynjournal[J]. J Plant Physiol, 2014,171:1576-1585.
doi: 10.1016/j.jplph.2014.07.014
URL
|
[31] |
Yi X P, Zhang Y L, Yao H S, et al. Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems[J]. Journal of Plant Physiology, 2016: 23-34.
|
[32] |
Hu Y Y, Zhang Y L, Yi X P, et al. The relative contribution of non-foliar organs of cotton to yield and related physiological characteristics under water deficit[J]. J Integr Agric, 2013,3:975-989.
|
[33] |
邵德意, 罗海华, 陈功, 等. 花铃期土壤干旱对棉花叶片抗氧化及光合作用的影响[J]. 棉花学报, 2018,30(2):155-163.
|
[34] |
张亚黎, 罗宏海, 张旺锋, 等. 土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响[J]. 植物生态学报, 2008,32(3):681-689.
doi: 10.3773/j.issn.1005-264x.2008.03.018
pmid: 387872BB-8FDD-4AC7-9A65-489CE4F3DF8E
|
[35] |
Zhang Y L, Zhang H Z, Du M W, et al. Leaf wilting movement can protect water-stressed cotton (Gossypium hirsutum L.) plants against photoinhibition of photosynjournal and maintain carbon assimilation in the field[J]. J Plant Biol, 2010,53:52-60.
doi: 10.1007/s12374-009-9085-z
URL
|