中国农学通报 ›› 2021, Vol. 37 ›› Issue (27): 59-64.doi: 10.11924/j.issn.1000-6850.casb2020-0773
所属专题: 农业生态
收稿日期:
2020-12-15
修回日期:
2021-04-13
出版日期:
2021-09-25
发布日期:
2021-10-28
通讯作者:
葛菁萍
作者简介:
常东浩,男,1996年出生,黑龙江人,硕士,研究方向:生态修复。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,Tel:18714577142,E-mail: 基金资助:
Chang Donghao1,2,3(), Ge Jingping1,2,3(
)
Received:
2020-12-15
Revised:
2021-04-13
Online:
2021-09-25
Published:
2021-10-28
Contact:
Ge Jingping
摘要:
伴随着时代的进步,关于治疗细菌性疾病的抗生素类药物不断的被研发出来,这类药物在畜牧养殖业和医疗行业广泛应用。由于抗生素类药物在人或动物体内很难被分解,又会随排泄物进入到环境中去,在生态环境中残留的抗生素可被动物吸收或在动物体内不断地积累,不同抗生素还会对环境中微生物种群的平衡造成破坏甚至会诱导产生抗性基因,对人类造成不可挽回的危害。文中分析了残留的抗生素可通过多种形式进入身体,并对人类健康造成危害;归纳了一些检测抗生素的常用方法;总结了降解抗生素的方法包括生物降解方法、非生物降解方法和生物联合降解的方法。最后指出了环境中残留抗生素降解的研究方向。
中图分类号:
常东浩, 葛菁萍. 生态环境中抗生素检测与降解方法的研究进展[J]. 中国农学通报, 2021, 37(27): 59-64.
Chang Donghao, Ge Jingping. Detection and Degradation of Antibiotics in Ecological Environment: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 59-64.
[1] | Cheng D M, Liu X H, Wang L, et al. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China[J]. Science of the Total Environment, 2014, 476- 477:266-275. |
[2] | 祖民会. 畜禽生产中抗生素使用及应对措施[J]. 畜牧兽医科学(电子版), 2020, 61(01):63-64. |
[3] |
Gadde U, Kim W H, Oh S T, et al. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review[J]. Animal Health Research Reviews, 2017, 18(1):26-45.
doi: 10.1017/S1466252316000207 pmid: 28485263 |
[4] | 吕玲玲, 雷建军, 宋明. 抗生素的研究及其在农业上的应用[J]. 微生物学杂志, 2003, 23(1):40-42. |
[5] | Guan Y D, Wang B, Gao Y X, et al. Occurrence and Fate of Antibiotics in the Aqueous Environment and Their Removal by Constructed Wetlands in China: A review[J]. Pedosphere, 2017(1):42-51. |
[6] |
Chen Q W, Guo X, Hua G F, et al. Migration and degradation of swine farm tetracyclines at the river catchment scale: Can the multi-pond system mitigate pollution risk to receiving rivers?[J]. Environmental Pollution, 2017, 220:1301-1310.
doi: 10.1016/j.envpol.2016.11.004 URL |
[7] |
Zhao J Y, Liu Y S, Liu W R, et al. Tissue-specific bioaccumulation of human and veterinary antibiotics in bile, plasma, liver and muscle tissues of wild fish from a highly urbanized region[J]. Environmental Pollution, 2015, 198:15-24.
doi: 10.1016/j.envpol.2014.12.026 URL |
[8] |
Li J Y, Wen J, Chen Y, et al. Antibiotics in cultured freshwater products in Eastern China: Occurrence, human health risks, sources, and bioaccumulation potential[J]. Chemosphere, 2020, 264:128441.
doi: 10.1016/j.chemosphere.2020.128441 URL |
[9] |
Sanderson H, Brain R A, Johnson D J, et al. Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones[J]. Toxicology, 2004, 203(1-3):27-40.
pmid: 15363579 |
[10] | Sun Y M, Guo G, Tian F, et al. Antibiotic resistance genes and bacterial community on the surfaces of five cultivars of fresh tomatoes[J]. Ecotoxicology, 2020(Suppl 1):1-9. |
[11] |
Hu X, Zhou Q, Luo Y. Occurrence and Source Analysis of Typical Veterinary Antibiotics in Manure, Soil, Vegetables and Groundwater from Organic Vegetable Bases, Northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998.
doi: 10.1016/j.envpol.2010.05.023 URL |
[12] | 汤贝贝, 张振华, 卢信, 等. 养殖废水中抗生素的植物修复研究进展[J]. 江苏农业学报, 2017, 33(1):224-232. |
[13] | 安静. 水环境中痕量抗生素检测方法的研究进展[J]. 北方环境, 2019, 31(10):176-178. |
[14] |
Łukaszewicz P, Białk-Bielińska A, Dołżonek J. et al A new approach for the extraction of tetracyclines from soil matrices: application of the microwave-extraction technique.[J]. Analytical and bioanalytical chemistry, 2018, 410(6):1697-707.
doi: 10.1007/s00216-017-0815-7 pmid: 29350257 |
[15] | 刘爽, 朱海荣, 于燕萍, 等. 土壤中抗生素检测技术研究进展[J]. 安徽农业科学, 2020, 48(20):9-13. |
[16] | Yudthavorasit S, Chiaochan C, Leepipatpiboon N. Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry[J]. Microchimica Acta, 2011, 172(1-2):39-49. |
[17] |
Xiao R, Wang S Q, Ibrahim M H, et al. Three-dimensional hierarchical frameworks based on molybdenum disulfide-graphene oxide-supported magnetic nanoparticles for enrichment fluoroquinolone antibiotics in water[J]. Journal of Chromatography A, 2019, 1593:1-8.
doi: S0021-9673(19)30135-9 pmid: 30765128 |
[18] | 蓝贤瑾, 刘益仁, 吕真真, 等. 氟喹诺酮类抗生素在我国农田土壤中残留及其风险研究进展[J]. 江西农业学报, 2019, 031(009):108-115. |
[19] | 张婉洁, 苏洋, 徐可欣, 等. 一种利用同一表面等离子体共振传感器检测多种残留物的方法[J]. 化学学报, 2010(24):2574-2580. |
[20] |
Cui H, Gao W, Lin Y, et al. Development of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of organic additives in biodegradable mulch films[J]. Microchemical Journal, 2021, 160:105722.
doi: 10.1016/j.microc.2020.105722 URL |
[21] | 李兴华, 苗俊杰, 康凯, 等. 固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J]. 理化检验:化学分册, 2019(7):769-777. |
[22] |
Dorival-García N, Labajo-Recio C, Zafra-Gómez A, et al. Improved sample treatment for the determination of 17 strong sorbed quinolone antibiotics from compost by ultra high performance liquid chromatography tandem mass spectrometry[J]. Talanta, 2015, 138:247-257
doi: S0039-9140(15)00164-2 pmid: 25863398 |
[23] |
Kim C, Ryu H D, Chung E G, et al. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction[J]. Journal of Chromatography B, 2018, 1084:158-165.
doi: 10.1016/j.jchromb.2018.03.038 URL |
[24] |
Abdulrasaq O, Titus A M M, Akan B W, et al. Solid-phase extraction and high performance liquid chromatography with diode array detection method for the determination of antibiotic residues in poultry tissues[J]. Chemical Data Collections, 2020, 25:100312.
doi: 10.1016/j.cdc.2019.100312 URL |
[25] | 张申平, 王艺蒙, 葛宇, 等. 基于孔材料的多元复合光催化剂降解抗生素[J]化工进展, 2020. |
[26] | 王建辉, 赵航, 闫娇, 等. 光催化降解四环素类抗生素废水影响因素分析[J]. 吉林师范大学学报:自然科学版, 2020, 41(03):75-80. |
[27] |
Wang C, Lin C Y, Liao G Y. Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process[J]. Journal of Water Process Engineering, 2020, 37:101463.
doi: 10.1016/j.jwpe.2020.101463 URL |
[28] | 金昊, 马富媛, 柴柳英, 等. 臭氧对8种磺胺类抗生素降解效果研究[J]. 生物化工, 2019, 5(2):57-59. |
[29] |
Zouanti M, Bezzina M, Dhib R. Experimental study of degradation and biodegradability of oxytetracycline antibiotic in aqueous solution using Fenton process[J]. Environmental Engineering Research, 2019, 25(3):316-323.
doi: 10.4491/eer.2018.343 URL |
[30] |
Li Q L, Kong H, Jia R J, et al. Enhanced catalytic degradation of amoxicillin with TiO2-Fe3O4 composites via a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)[J]. RSC Advances, 2019, 9(22):12538-12546.
doi: 10.1039/C9RA00158A URL |
[31] |
Fang S Y, Zhang P, Gong J L, et al. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation[J]. Chemical Engineering Journal, 2019, 385:123400.
doi: 10.1016/j.cej.2019.123400 URL |
[32] | Cheng X Q, Wang Z X, Zhang Y, et al. Bio-inspired Loose Nanofiltration Membranes with Optimized Separation Performance for Antibiotics Removals[J]. Journal of Membrane ence, 2018:385-394. |
[33] | 王健行, 魏源送, 成宇涛, 等. 颗粒活性炭深度处理抗生素废水[J]. 环境工程学报, 2013, 2(2):401-410. |
[34] | 赵涛, 蒋成爱, 丘锦荣, 等. 皇竹草生物炭对水中磺胺类抗生素吸附性能研究[J]. 水处理技术, 2017, 43(4):56-61,65. |
[35] | 陈小洁, 李凤玉, 郝雅宾. 两种水生植物对抗生素污染水体的修复作用[J]. 亚热带植物科学, 2012, 41(4):1-7. |
[36] | Chung H S, Lee Y J, Rahman M M, et al. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish[J]. ence of The Total Environment, 2017, 605- 606:322-331. |
[37] | 吴迎, 冯朋雅, 李荣, 等. 环境抗生素污染的微生物修复进展[J]. 生物工程学报, 2019, 35(11):2133-2150. |
[38] | Abdullah D N, Ali G E, Mariadhas V A. Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor[J]. Chemosphere, 2020. |
[39] |
Liang D H, Hu Y. Simultaneous sulfamethoxazole biodegradation and nitrogen conversion by Achromobacter sp. JL9 using with different carbon and nitrogen sources[J]. Bioresource Technology, 2019, 293:122061.
doi: S0960-8524(19)31291-X pmid: 31520862 |
[40] | 陈小丽, 魏金华, 蔺中, 等. 抗生素的微生物降解研究进展[J]. 现代农业科技, 2018, 16:167-168. |
[41] | Čvančarová M, Moeder M, Filipová A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi-Metabolites, enzymes and residual antibacterial activity[J]. Chemosphere: Environmental toxicology and risk assessment, 2015, 136:311-320. |
[42] |
Prieto A, Moder M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresource Technology, 2011, 102(23):10987-10995.
doi: 10.1016/j.biortech.2011.08.055 URL |
[43] |
Hu Z, Liu Y, Chen G, et al. Characterization of organic matter degradation during composting of manure-straw mixtures spiked with tetracyclines[J]. Bioresource Technology, 2011, 102(15):7329-7334.
doi: 10.1016/j.biortech.2011.05.003 URL |
[44] | 时红蕾. 粪便好氧堆肥过程中典型抗生素的行为特性研究[D]. 西安:西安建筑科技大学, 2018. |
[45] |
Kumar M, Jaiswal S, Sodhi K K, et al. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance[J]. Environment international, 2019, 124:448-461.
doi: 10.1016/j.envint.2018.12.065 URL |
[46] |
Ehsan D, Javad Z M, Malekzadeh H A, et al. Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption[J]. Bioresource Technology, 2018, 268:523-530.
doi: 10.1016/j.biortech.2018.08.032 URL |
[47] | Norvill Z N, Toledo-Cervantes A, Blanco S, et al. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds[J]. Bioresource Technology Biomass Bioenergy Biowastes Conversion Technologies Biotransformations Production Technologies, 2017, 232:35-43. |
[48] | Yang X L, Xu J Y, Song H L, et al. Enhanced removal of antibiotics in wastewater by membrane bioreactor with addition of rice straw[J]. International Biodeterioration & Biodegradation, 2020, 148:104868. |
[49] | Yu D W, Wang J X, Zheng L B, et al. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Frontiers of Environmental ence & Engineering, 2020, 14(6):13. |
[50] | 陈苏, 陈宁, 晁雷, 等. 土霉素、镉复合污染土壤的植物-微生物联合修复实验研究[J]. 生态环境学报, 2015, 24(9):1554-1559. |
[51] | 李舒涵, 杨红薇, 郑雨蒙, 等. 土壤渗滤系统处理典型抗生素的研究进展[J]. 四川环境, 2019, 38(5):186-194. |
[52] | Wei L, Qin K, Zhao N, et al. Transformation of erythromycin during secondary effluent soil aquifer recharging: Removal contribution and degradation path[J]. Journal of Environmental ences, 2017, 51(1):173-180. |
[1] | 刘颖, 耿丹丹, 韩永胜, 魏敏, 刘柳. 环保型农林保水剂研制、性能与应用[J]. 中国农学通报, 2022, 38(7): 86-90. |
[2] | 陈瑞英, 赵培荣, 刘宏金, 张雷, 郭晓宇. 可降解地膜在马铃薯上的应用效果研究[J]. 中国农学通报, 2022, 38(6): 37-41. |
[3] | 程璐, 文永莉, 程曼. UV-B辐射增强对陆地生态系统温室气体排放影响的研究进展[J]. 中国农学通报, 2022, 38(33): 80-88. |
[4] | 曹永清, 刘艳, 张丽慧, 晋婷婷, 任嘉红. 荧光假单胞CLW17菌株对草甘膦的降解及其机制初探[J]. 中国农学通报, 2022, 38(30): 108-117. |
[5] | 刘淑娟, 张翠萍, 李淑英, 杨小燕, 周元清, 李元. 草本植物根际微生物降解地表水环境邻苯二甲酸酯的研究[J]. 中国农学通报, 2022, 38(3): 44-51. |
[6] | 杨琪雪, 潘换换, 吴树荣, 杜自强, 张红, 武志涛. 基于GIS的山西省煤田生态环境敏感性评价[J]. 中国农学通报, 2022, 38(3): 59-66. |
[7] | 张云, 萨如拉, 包桂荣, 萨茹拉其其格, 邰继承, 李响. 秸秆降解菌系的筛选及其对酸碱度的响应[J]. 中国农学通报, 2022, 38(28): 21-27. |
[8] | 聂晓瑀, 于春静, 卢倩, 崔继哲. 微生物在农作物秸秆好氧堆肥过程中的研究进展[J]. 中国农学通报, 2022, 38(26): 76-81. |
[9] | 郭东森, 王琳, 魏启舜, 崔联明, 周影, 郭成宝. 羽毛生物降解液对盐胁迫下小白菜生长的生理调控作用[J]. 中国农学通报, 2022, 38(25): 25-29. |
[10] | 权胜祥, 史学峰, 刘晓月, 李昌武, 葛燚, 张燕. 可降解螯合剂强化籽粒苋修复镉污染耕地的研究[J]. 中国农学通报, 2022, 38(25): 85-89. |
[11] | 宋佳, 潘妍, 王皙玮, 於丽华. 除草剂阿特拉津在土壤中降解方式的研究现状[J]. 中国农学通报, 2022, 38(25): 90-95. |
[12] | 马贵芳, 辛海波, 修莉, 孙朝霞, 张华. 荞麦脱壳性状的研究进展[J]. 中国农学通报, 2022, 38(24): 19-27. |
[13] | 韩晓云, 胡长林, 许可, 郑桂华, 郭宇豪, 孙庆申. 玉米芯降解复合菌剂的构建及其发酵效果初探[J]. 中国农学通报, 2022, 38(20): 20-28. |
[14] | 邱天艺, 徐悦, 甄锦程, 司璐, 于洪佳, 穆玉婷, 徐利剑. 大兴安岭森林凋落物的活性真菌及其代谢产物研究[J]. 中国农学通报, 2022, 38(18): 122-127. |
[15] | 高岩, 李志斐, 刘阳, 王广军, 谢骏, 郭照良. 草型湖泊水生植物残体的生物降解研究进展[J]. 中国农学通报, 2022, 38(15): 53-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||