中国农学通报 ›› 2021, Vol. 37 ›› Issue (29): 42-46.doi: 10.11924/j.issn.1000-6850.casb2020-0772
收稿日期:
2020-12-15
修回日期:
2021-04-13
出版日期:
2021-10-15
发布日期:
2021-10-29
通讯作者:
蔡柏岩
作者简介:
陈吉,女,1997年出生,黑龙江哈尔滨人,硕士,研究方向:生态修复。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,E-mail: 基金资助:
Chen Ji1,2,3(), Cai Baiyan1,2,3(
)
Received:
2020-12-15
Revised:
2021-04-13
Online:
2021-10-15
Published:
2021-10-29
Contact:
Cai Baiyan
摘要:
本文旨在深入了解植物体对硫素的吸收方式及转运机制,归纳了近年来关于硫素对植物的重要性、植物缺硫的症状、植物对硫吸收和转运的机理,着重分析了硫酸盐的转运机制,硫酸盐进入植物体内经过活化、还原和半胱氨酸的合成过程,总结了国内外关于硫酸盐在植物体内部的变化、各种存在形式的利用机制,指出该领域仍存在的一些问题以及未来的研究侧重点,为相关研究奠定基础。
中图分类号:
陈吉, 蔡柏岩. 植物对硫素的吸收、转运及利用的研究进展[J]. 中国农学通报, 2021, 37(29): 42-46.
Chen Ji, Cai Baiyan. Absorption, Transport and Utilization of Sulfur in Plants: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 42-46.
[1] |
Komarnisky L A, Christopherson R J, Basu T K. Sulfur: its clinical and toxicologic aspects[J]. Nutrition, 2003, 19(1):54-61.
pmid: 12507640 |
[2] |
Cicek A, Koparal A S. Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tuncbilek Thermal Power Plant[J]. Chemosphere, 2004, 57(8):1031-1036.
pmid: 15488593 |
[3] | 李文骥, 郑平, 许冬冬, 等. 硫氧化细菌源单质硫的生成、转运和回收[J]. 微生物学报, 2021, 61(1):25-40. |
[4] | Mahar A, Wang P, Ali A, et al. Impact of CaO, fly ash, sulfur and Na2S on the (im)mobilization and phytoavailability of Cd, Cu and Pb in contaminated soil[J]. Ecotoxicology and Environmental Safety, 2016, 134P1(pt.1):116-123. |
[5] | Scherer H W. Sulfur in soils[J]. Journal of Plant Nutrition and Soil ence, 2009, 172(3):326-335. |
[6] | Jørgen E. Soil sulfur cycling in temperate agricultural systems[J]. Advances in Agronomy, 2009, 102:55-89. |
[7] | Dick W A, Kost D, Chen L. Availability of sulfur to crops from soil and other sources. Sulfur: A missing link between soils, crops, and nutrition[J]. Agronomynomogra, 2008, 50:59-82. |
[8] |
Chen C H, Koenig J L, Shelton J R, et al. The Influence of Carbon Black on the Reversion Process in Sulfur-Accelerated Vulcanization of Natural Rubber[J]. Rubber Chemistry and Technology, 1982, 55(1):103-115.
doi: 10.5254/1.3535860 URL |
[9] | 罗曼琳, 窦添元, 向秋洁, 等. 重庆农田土壤硫分布特征及其影响因素[J]. 农业资源与环境学报, 2019, 36(3):287-297. |
[10] |
D Pavlović, B Nikolić, S Đurović, et al. Chlorophyll as a measure of plant health: Agroecological aspects[J]. Pesticidi i fitomedicina, 2014, 29(1):21-34.
doi: 10.2298/PIF1401021P URL |
[11] | Khan, Nafees A, Sarvajeet S, et al. Sulfur Assimilation and Abiotic Stress in Plants[M]. Berlin: springer, 2008. |
[12] | Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism[J]. Front Plant, 2014, 5. |
[13] | Black B A, Hauri E H, Elkins-Tanton L T, et al. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas[J]. Earth & Planetary ence Letters, 2014, 394:58-69. |
[14] |
Fuentes-Lara L O, Julia Medrano-Macías, Fabián Pérez-Labrada, et al. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants[J]. Molecules, 2019, 24(12):2282.
doi: 10.3390/molecules24122282 URL |
[15] | 高义民, 同延安, 孙本华, 等. 陕西农田土壤硫分布特征及其与土壤性质的关系[J]. 西北农业学报, 2005(03):182-185. |
[16] | 刘潇潇, 王钧, 曾辉. 中国温带草地土壤硫的分布特征及其与环境因子的关系[J]. 生态学报, 2016, 36(24):7919-7928. |
[17] | Schroth A W, Bostick B C, Graham M, et al. Sulfur species behavior in soil organic matter during decomposition[J]. Journal of Geophysical Research Biogeoences, 2015, 112(G4):1-10. |
[18] |
Piotrowska-Dugosz A, Siwik-Ziomek A, Dugosz J, et al. Spatio-temporal variability of soil sulfur content and arylsulfatase activity at a conventionally managed arable field[J]. Geoderma, 2017, 295:107-118.
doi: 10.1016/j.geoderma.2017.02.009 URL |
[19] | 田临卿. 硫素营养调控对烤烟生长发育和品质的影响[D]. 郑州:河南农业大学, 2014. |
[20] | 马强. 土壤与植物中的硫素营养研究进展[J]. 农技服务, 2011, 28(2):165-167. |
[21] | Qiong Q, Fang H J. Spatial and seasonal distributions of soil sulfur in two marsh wetlands with different flooding frequencies of the Yellow River Delta, China[J]. Ecological engineering: The Journal of Ecotechnology, 2016, 96:63-71. |
[22] | 王丽, 吴忠东, 沈新磊. 土壤硫肥研究进展[J]. 河南农业, 2019(13):20. |
[23] | Lunde C, Zygadlo A, Simonsen H T, et al. Sulfur starvation in rice: the effect on photosynjournal, carbohydrate metabolism, and oxidative stress protective pathways[J]. Physiologia Plantarum, 2008. |
[24] | Agustín Pagani, Hernán E, Echeverría. Influence of sulfur deficiency on chlorophyll-meter readings of corn leaves[J]. Journal of Plant Nutrition & Soil ence, 2012, 175(4):604-613. |
[25] |
Pavlista A D. Early-Season Applications of Sulfur Fertilizers Increase Potato Yield and Reduce Tuber Defects[J]. Agronomy Journal, 2005, 97(2):599-603.
doi: 10.2134/agronj2005.0599 URL |
[26] | Ye R, Wright A L, Orem W H, et al. Sulfur Distribution and Transformations in Everglades Agricultural Area Soil as Influenced by Sulfur Amendment[J]. Soil ence, 2010, 175(6):263-269. |
[27] | Niknahad-Gharmakher H, Piutti S, Machet J M, et al. Mineralization-immobilization of sulphur in a soil during decomposition of plant residues of varied chemical composition and S content[J]. Plant & Soil, 2012, 360(1-2):391-404. |
[28] | 许飞云, 张茂星, 曾后清, 等. 水稻根系细胞膜质子泵在氮磷钾养分吸收中的作用[J]. 中国水稻科学, 2016, 30(1):106-110. |
[29] |
Hubberten H M, Drozd A, Tran B V, et al. Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana[J]. Plant Journal, 2012, 72(4):625-635.
doi: 10.1111/tpj.2012.72.issue-4 URL |
[30] | Chen W L, Li J, Zhu H H, et al. A Review of the Regulation of Plant Root System Architecture by Rhizosphere Microorganisms[J]. Acta Ecologica Sinica, 2016, 36(17). |
[31] | 张涛. 牛粪生物质炭对淡灰钙土-作物系统中作物生理特征及硫的植物有效性影响研究[D]. 兰州:兰州交通大学, 2017. |
[32] | 张慧萍, 王淑月, 欧忠辉. 根表面养分吸收通量和根围溶质浓度的近似解析解[J]. 植物生态学报, 2018, 42(10):71-77. |
[33] |
Gojon A, Nacry P, Davidian J C. Root uptake regulation: a central process for NPS homeostasis in plants[J]. Current Opinion in Plant Biology, 2009, 12(3):328-338.
doi: 10.1016/j.pbi.2009.04.015 URL |
[34] | Vacheron J, Desbrosses G, Bouffaud M L, et al. Plant growth-promoting rhizobacteria and root system functioning[J]. Frontiers in Plant ence, 2013, 4(September):356. |
[35] |
Wang Z, Zhang H, He C, et al. Spatiotemporal variability in soil sulfur storage is changed by exotic Spartina alterniflora in the Jiuduansha Wetland, China[J]. Ecological Engineering, 2019, 133:160-166.
doi: 10.1016/j.ecoleng.2019.04.014 URL |
[36] |
Annekathrin, Weese, Philip, et al. Brassica napus L. cultivars show a broad variability in their morphology, physiology and metabolite levels in response to sulfur limitations and to pathogen attack[J]. Frontiers in Plant Science, 2015, 6:9.
doi: 10.3389/fpls.2015.00009 pmid: 25699060 |
[37] |
Zhao Y, Xiao X, Bi D, et al. Effects of Sulfur Fertilization on Soybean Root and Leaf Traits, and Soil Microbial Activity[J]. Journal of Plant Nutrition, 2008, 31(3):473-483.
doi: 10.1080/01904160801895001 URL |
[38] |
Barberon M, Geldner N. Radial Transport of Nutrients: The Plant Root as a Polarized Epithelium[J]. Plant Physiology, 2014, 166(2):528-537.
doi: 10.1104/pp.114.246124 pmid: 25136061 |
[39] | 刘新展, 贺纪正, 张丽梅. 水稻土中硫酸盐还原微生物研究进展[J]. 生态学报, 2009, 29(8):4455-4463. |
[40] | Hawkesford M J, Kok L J D. Managing sulphur metabolism in plants[J]. Plant Cell & Environment, 2010, 29(3):382-395. |
[41] |
Małgorzata Lewandowska, Sirko A. Recent advances in understanding plant response to sulfur-deficiency stress[J]. Acta Biochimica Polonica, 2008, 55(3):457.
pmid: 18787711 |
[42] |
Kopriva S, Wiedemann G, Reski R. Sulfate Assimilation in Basal Land Plants What Does Genomic Sequencing Tell Us?[J]. Plant Biology, 2007, 9(5):556-564.
pmid: 17853355 |
[43] |
Paulsen C E, Carroll K S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery[J]. Chemical Reviews, 2013, 113(7):4633-4679.
doi: 10.1021/cr300163e URL |
[44] | Justin M, Chalker, Gonçalo J L, et al. Chemical Modification of Proteins at Cysteine: Opportunities in Chemistry and Biology[J]. Chemistry-An Asian Journal, 2009. |
[45] | 林惠荣. 水稻土壤重金属和硫分子形态转化的功能微生物作用机制[D]. 杭州:浙江大学, 2010. |
[46] |
Kazuki Saito. Sulfur Assimilatory Metabolism. The Long and Smelling Road[J]. Plant Physiology, 2004, 136(1):2443-2450.
pmid: 15375200 |
[47] |
Burton E D, Sullivan L A, Bush R T, et al. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[J]. Applied Geochemistry, 2008, 23(9):2759-2766.
doi: 10.1016/j.apgeochem.2008.07.007 URL |
[48] | Liang T, Ding H, Wang G, et al. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L.[J]. Ecotoxicology & Environmental Safety, 2016:124-129. |
[49] | Edwards R, Dixon D P. Plant Glutathione Transferases[J]. Methods in Enzymology, 2005, 401(3):169-186. |
[50] |
Berndt W L, Jr J. Elemental sulfur reduces to sulfide in black layer soil[J]. HortScience, 2008, 43(5):1615-1618.
doi: 10.21273/HORTSCI.43.5.1615 URL |
[51] | Klose S. Sulfur cycle enzymes[J]. Methods of soil enzymology, 2011, 9:125-159. |
[52] | Kertesz M A, Fellows E, Schmalenberger A. Rhizobacteria and plant sulfur supply[J]. Advances in Applied Microbiology, 2007, 62:235-268. |
[53] | 辛亮. 半胱氨酸与无机硫配施对小麦籽粒品质的影响研究[D]. 南京:南京农业大学, 2016. |
[54] | Baligar V C, Wright R J, Hern J L. Enzyme Activities in Soil Influenced by Levels of Applied Sulfur and Phosphorus[J]. Communications in Soil ence & Plant Analysis, 2005, 36(13-14):1727-1735. |
[55] | Droux M. Sulfur Assimilation and the Role of Sulfur in Plant Metabolism: A Survey[J]. Photosynjournal Research, 2004, 79(3):331-348. |
[56] | Kredich, Nicholas M. Biosynjournal of Cysteine[J]. Ecosal Plus, 2008, 3(1):1-30. |
[1] | 殷婷婷, 李志慧, 苏佳贺, 吴世迪, 徐红岩, 贺帅, 刘培, 李相前. 生物法制备纳米硒的研究进展和应用前景[J]. 中国农学通报, 2022, 38(8): 33-41. |
[2] | 董文彩, 刘宪斌, 李红梅, 赵双梅, 包金美, 沈健萍, 梁芳, 鲁美. 不同水平供钙量对木本观赏植物生长发育的影响[J]. 中国农学通报, 2022, 38(8): 42-50. |
[3] | 张日谦, 何孟莹, 钱美娇, 张雪, 刘依琳, 宛传捷, 张震. 不同生境中喜旱莲子草雄蕊雌化的发生及其在花序内的分布模式[J]. 中国农学通报, 2022, 38(4): 29-35. |
[4] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. |
[5] | 李爽, 张小军, 王平, 徐永菊, 侯睿, 朱勋路, 刘行, 张相琼, 岳福良, 李文均, 张小红. 花生不同遗传背景下的花生芽产出系数比较[J]. 中国农学通报, 2022, 38(31): 17-23. |
[6] | 李政璞, 佟静, 王素娜, 李炎艳, 王丽萍, 梁浩, 武占会. 光周期对植物工厂水芹产量和品质的影响[J]. 中国农学通报, 2022, 38(31): 38-42. |
[7] | 王晴, 方文生, 李园, 王秋霞, 颜冬冬, 曹坳程. 杀线虫剂新品种及作用机制研究进展[J]. 中国农学通报, 2022, 38(30): 100-107. |
[8] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[9] | 刘淑娟, 张翠萍, 李淑英, 杨小燕, 周元清, 李元. 草本植物根际微生物降解地表水环境邻苯二甲酸酯的研究[J]. 中国农学通报, 2022, 38(3): 44-51. |
[10] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. |
[11] | 王春玲, 叶彩华, 姜江. 北京地区春季木本植物花粉起始期预报模型研究[J]. 中国农学通报, 2022, 38(28): 89-97. |
[12] | 吴宇炼, 范慧艳, 汪彦欣, 徐凯逸, 邵承媛. 植物免疫诱抗剂研究文献计量可视化分析[J]. 中国农学通报, 2022, 38(27): 138-146. |
[13] | 李佳佳, 徐翎清, 赵阳, 芮秀丽, 石俊婷, 刘大丽. 氮代谢参与植物低氮胁迫研究进展[J]. 中国农学通报, 2022, 38(27): 119-124. |
[14] | 缪宗崇. 中国植物新品种保护制度的完善思考[J]. 中国农学通报, 2022, 38(26): 100-104. |
[15] | 李荣林, 唐君, 艾仄宜, 穆兵, 杨亦扬, 陈正涛, 史海华. 香草提取物和植物精油增强茶树抗逆能力的效应[J]. 中国农学通报, 2022, 38(26): 111-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||