Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (29): 145-152.doi: 10.11924/j.issn.1000-6850.casb2020-0056
Previous Articles Next Articles
Cheng Zhichao1(), Wang Wenhao1, Sui Xin1(
), Zeng Xiannan2
Received:
2020-04-27
Revised:
2020-06-25
Online:
2020-10-15
Published:
2020-10-16
Contact:
Sui Xin
E-mail:1205420828@qq.com;xinsui_cool@126.com
CLC Number:
Cheng Zhichao, Wang Wenhao, Sui Xin, Zeng Xiannan. Research Hotspots and Trends of Wetland Soil Microbiology Based on Bibliometric Analysis[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 145-152.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0056
频次 | 关键词 | 频次 | 关键词 | 频次 | 关键词 |
---|---|---|---|---|---|
84 | 湿地 | 22 | 土壤酶 | 14 | 微生物活性 |
80 | 土壤微生物 | 21 | 微生物 | 14 | 温室气体 |
32 | 土壤酶活性 | 19 | 土壤 | 13 | 土壤理化性质 |
26 | 微生物量碳 | 19 | 微生物多样性 | 13 | 有机碳 |
25 | 酶活性 | 18 | 土壤养分 | 13 | 微生物群落结构 |
25 | 滨海湿地 | 16 | 群落结构 | 13 | 细菌 |
24 | 土壤有机碳 | 16 | 鄱阳湖 | 13 | 三江平原 |
23 | 高通量测序 | 15 | 黄河三角洲 | 12 | Biolog |
23 | 互花米草 | 15 | 微生物群落 | 11 | 芦苇 |
22 | 湿地土壤 | 15 | 人工湿地 | 11 | 沼泽湿地 |
22 | 土壤呼吸 | 15 | 影响因素 |
频次 | 关键词 | 频次 | 关键词 | 频次 | 关键词 |
---|---|---|---|---|---|
84 | 湿地 | 22 | 土壤酶 | 14 | 微生物活性 |
80 | 土壤微生物 | 21 | 微生物 | 14 | 温室气体 |
32 | 土壤酶活性 | 19 | 土壤 | 13 | 土壤理化性质 |
26 | 微生物量碳 | 19 | 微生物多样性 | 13 | 有机碳 |
25 | 酶活性 | 18 | 土壤养分 | 13 | 微生物群落结构 |
25 | 滨海湿地 | 16 | 群落结构 | 13 | 细菌 |
24 | 土壤有机碳 | 16 | 鄱阳湖 | 13 | 三江平原 |
23 | 高通量测序 | 15 | 黄河三角洲 | 12 | Biolog |
23 | 互花米草 | 15 | 微生物群落 | 11 | 芦苇 |
22 | 湿地土壤 | 15 | 人工湿地 | 11 | 沼泽湿地 |
22 | 土壤呼吸 | 15 | 影响因素 |
频次 | 关键词 | 频次 | 关键词 | 频次 | 关键词 |
---|---|---|---|---|---|
22 | Wetland | 5 | Microbe | 3 | Arsenic |
17 | Wetlands | 5 | Rhizosphere | 3 | Wetland restoration |
15 | Phytoremediation | 5 | Dissolved organic carbon | 3 | Soil organic matter |
12 | Microbes | 5 | Nitrification | 3 | Soil organic carbon |
11 | Constructed wetland | 5 | Biogeochemistry | 3 | Wastewater |
10 | Constructed wetlands | 4 | Metagenomics | 3 | T-RFLP |
10 | Nitrogen | 4 | Carbon sequestration | 3 | Salt marsh |
9 | Denitrification | 4 | Paddy soil | 3 | Ammonium |
9 | Microbial community | 4 | Methanotrophs | 3 | Nitrogen removal |
7 | Biodegradation | 4 | PLFA | 3 | Enzymes |
7 | Methane | 4 | Rice | 3 | Decomposition |
7 | Phosphorus | 4 | Heavy metals | 3 | Diversity |
7 | Fungi | 4 | Blue carbon | 3 | Salinity |
7 | Degradation | 4 | Microbial communities | 3 | Carbon |
6 | Bioremediation | 4 | Extracellular enzymes | 3 | Enzyme activity |
6 | Peat | 4 | Peatland | 3 | Soil microorganisms |
6 | Bacteria | 4 | Methane oxidation | 3 | Diesel |
6 | Spartina alterniflora | 4 | Coastal wetland | 3 | Rhizodeposition |
5 | Soil | 4 | Pyrene | 3 | Microbial community structure |
5 | Nitrate | 4 | Phragmites australis | ||
5 | Microbial diversity | 4 | Microbial biomass |
频次 | 关键词 | 频次 | 关键词 | 频次 | 关键词 |
---|---|---|---|---|---|
22 | Wetland | 5 | Microbe | 3 | Arsenic |
17 | Wetlands | 5 | Rhizosphere | 3 | Wetland restoration |
15 | Phytoremediation | 5 | Dissolved organic carbon | 3 | Soil organic matter |
12 | Microbes | 5 | Nitrification | 3 | Soil organic carbon |
11 | Constructed wetland | 5 | Biogeochemistry | 3 | Wastewater |
10 | Constructed wetlands | 4 | Metagenomics | 3 | T-RFLP |
10 | Nitrogen | 4 | Carbon sequestration | 3 | Salt marsh |
9 | Denitrification | 4 | Paddy soil | 3 | Ammonium |
9 | Microbial community | 4 | Methanotrophs | 3 | Nitrogen removal |
7 | Biodegradation | 4 | PLFA | 3 | Enzymes |
7 | Methane | 4 | Rice | 3 | Decomposition |
7 | Phosphorus | 4 | Heavy metals | 3 | Diversity |
7 | Fungi | 4 | Blue carbon | 3 | Salinity |
7 | Degradation | 4 | Microbial communities | 3 | Carbon |
6 | Bioremediation | 4 | Extracellular enzymes | 3 | Enzyme activity |
6 | Peat | 4 | Peatland | 3 | Soil microorganisms |
6 | Bacteria | 4 | Methane oxidation | 3 | Diesel |
6 | Spartina alterniflora | 4 | Coastal wetland | 3 | Rhizodeposition |
5 | Soil | 4 | Pyrene | 3 | Microbial community structure |
5 | Nitrate | 4 | Phragmites australis | ||
5 | Microbial diversity | 4 | Microbial biomass |
群集 | 关键词 |
---|---|
群集1 | Wetland、Wetlands、Phytoremediation、Microbes、Constructed wetland、Constructed wetlands、Denitrification、Microbial community、Biodegradation、Degradation、Bioremediation、Spartina alterniflora、Soil、Nitrate、Microbial diversity、Microbe、Rhizosphere、Dissolved organic carbon、Nitrification、Biogeochemistry、Metagenomics、Carbon sequestration、Paddy soil、Methanotrophs、PLFA、Rice、Heavy metals、Blue carbon、Microbial communities、Extracellular enzymes、Peatland、Methane oxidation、Coastal wetland、Pyrene、Phragmites australis |
群集2 | Nitrogen、Methane、Phosphorus、Peat、Microbial biomass |
群集3 | Fungi、Bacteria |
群集 | 关键词 |
---|---|
群集1 | Wetland、Wetlands、Phytoremediation、Microbes、Constructed wetland、Constructed wetlands、Denitrification、Microbial community、Biodegradation、Degradation、Bioremediation、Spartina alterniflora、Soil、Nitrate、Microbial diversity、Microbe、Rhizosphere、Dissolved organic carbon、Nitrification、Biogeochemistry、Metagenomics、Carbon sequestration、Paddy soil、Methanotrophs、PLFA、Rice、Heavy metals、Blue carbon、Microbial communities、Extracellular enzymes、Peatland、Methane oxidation、Coastal wetland、Pyrene、Phragmites australis |
群集2 | Nitrogen、Methane、Phosphorus、Peat、Microbial biomass |
群集3 | Fungi、Bacteria |
群集 | 关键词 |
---|---|
群集1 | 湿地、土壤微生物、土壤酶活性、土壤酶、土壤养分 |
群集2 | 微生物量碳、沼泽湿地 |
群集3 | 酶活性、滨海湿地、土壤有机碳、高通量测序、互花米草、湿地土壤、土壤呼吸、微生物、土壤、微生物多样性、群落结构、鄱阳湖、黄河三角洲、微生物群落、人工湿地、影响因素、微生物活性、温室气体、土壤理化性质、有机碳、微生物群落结构、细菌、三江平原、Biolog、芦苇 |
群集 | 关键词 |
---|---|
群集1 | 湿地、土壤微生物、土壤酶活性、土壤酶、土壤养分 |
群集2 | 微生物量碳、沼泽湿地 |
群集3 | 酶活性、滨海湿地、土壤有机碳、高通量测序、互花米草、湿地土壤、土壤呼吸、微生物、土壤、微生物多样性、群落结构、鄱阳湖、黄河三角洲、微生物群落、人工湿地、影响因素、微生物活性、温室气体、土壤理化性质、有机碳、微生物群落结构、细菌、三江平原、Biolog、芦苇 |
[1] | 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008,45(5):892-900. |
[2] | 赵先丽, 周广胜, 吕国红. 辽河三角洲不同植被类型土壤微生物特征研究[J]. 土壤通报, 2009,40(6):1266-1269. |
[3] | Yin R, Deng H, Wang H L, et al. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China[J]. Catena, 2014(115):96-103. |
[4] | Birgander J, Rousk J, Olsson P A. Comparison of fertility and seasonal effects on grassland microbial communities[J]. Soil Biology &Biochemistry, 2014(76):80-89. |
[5] | Stone M M, DeForest J L, Plante A F, et al. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory[J]. Soil Biology & Biochemistry, 2014(75):237-247. |
[6] | Qian X, Gu J, Sun W, et al. Changes in the soil nutrient levels,enzyme activities, microbial community function, and structure during apple orchard maturation[J]. Applied Soil Ecology, 2014(77):18-25. |
[7] | Nicomrat D, Dick W A, Tuovinen O H, et al. Assessment of the Microbial Community in a Constructed Wetland that Receives Acid Coal Mine Drainage[J]. Microbial Community In An AMD Wetland, 2006(51):83-89. |
[8] | AhnC , Peralta R M. Soil bacterial community structure and physicochemical properties in mitigation wetlands created in the Piedmont region of Virginia (USA)[J]. Ecological Engineering, 2009(35):1036-1042. |
[9] |
Jones R T, Robeson M S, Lauber C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009,3(4):442-453.
doi: 10.1038/ismej.2008.127 URL pmid: 19129864 |
[10] |
Lee S H, Ka J O, Cho J C. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil[J]. Fems Microbiology Letters, 2008,285(2):263-269.
URL pmid: 18557943 |
[11] | 范全青, 郭维真, 凤元杰. 我国文献计量学研究30年之发展[J]. 情报资料工作, 2009(3):30-33,60. |
[12] | 邱均平, 段宇锋, 陈敬全, 等. 我国文献计量学发展的回顾与展望[J]. 科学学研究, 2003,21(2):143-148. |
[13] | Onofre Martorell Cunill, Antonio Socias Salvá, Luis Otero Gonzalez, et al. Thirty-fifth anniversary of the international journal of hospitality management: a bibliometric overview[J]. International Journal of Hospitality Management, 2019,78. |
[14] | 赖勇, 阳富强. 基于CNKI数据库的安全疏散文献计量学分析[J]. 安全与环境工程, 2018,25(6):114-119. |
[15] | 张雅男, 张玲. 基于文献计量学的同学科领域学术表现评价体系研究[J]. 农业图书情报学刊, 2018,30(11):57-61. |
[16] | 刁敬东, 农晓琳. 文献计量学在学术期刊评价中的应用研究[J]. 医学信息, 2018,31(23):16-18. |
[17] | Elise , Tancoigne , Marc , et al. The place of agricultural sciences in the literature on ecosystem services[J]. Ecosystem Services, 2014(10):35-48. |
[18] | Callon M, Law J, Rip A . Mapping the Dynamics of Science and Technology: Sociology of Science in the Real World[M]. The Macmillan Press, 1986. |
[19] | 李秋云, 韩国圣, 张爱平, 等. 1979—2012年中国旅游地理学文献计量与内容分析[J]. 旅游学刊, 2014,29(9):110-119. |
[20] | Cambrosio A, Limoges C, Courtial J P, et al. Historical scientometrics? Mapping over 70 years of biological safety research with coword analysis[J]. Scientometrics, 1993,27(2):119-143. |
[21] | 俞杨. 计量地理学[J]. 地理科学进展, 1982,1(1):60-61. |
[22] | Rene , Tshiteya , Ronald , et al. Nonlinear dynamics text mining using bibliometrics and database tomography[J]. International Journal of Bifurcation & Chaos, 2004,14(1):61-92. |
[23] | 李志杰, 孙井梅, 刘宝山. 人工湿地脱氮除磷机理及其研究进展[J]. 工业水处理, 2012,32(4):1-5. |
[24] | 毛志刚, 谷孝鸿, 刘金娥, 等. 盐城海滨湿地盐沼植被及农作物下土壤酶活性特征[J]. 生态学报, 2010,30(18):5043-5049. |
[25] | 郑真. 不同退耕年限湿地土壤理化性质和微生物活性特征[D]. 合肥:安徽师范大学, 2014. |
[26] | 郑艳霞. 三江源不同湿地类型土壤微生物数量特征及生物量碳研究[D]. 西宁:青海大学, 2013. |
[27] | 丁新华. 扎龙湿地湿草甸土壤微生物特性研究[D]. 哈尔滨:东北林业大学, 2011. |
[28] | 陈为峰, 史衍玺. 黄河三角洲新生湿地不同植被类型土壤的微生物分布特征[J]. 草地学报, 2010,18(6):859-864. |
[29] | 李松龄, 张荣, 蔡晓剑, 等. 三江源不同生态系统下土壤微生物区系研究[J]. 青海大学学报:自然科学版, 2008(4):64-67. |
[30] | 王世岩, 杨永兴, 杨波. 三江平原典型湿地土壤温度变化及其影响因子分析[J]. 地理研究, 2003(3):389-396. |
[31] | 张妍. 采伐干扰对温带小兴安岭森林湿地碳源/汇影响[D]. 哈尔滨:东北林业大学, 2016. |
[32] | 田永祥, 林杨. 湖南小溪国家级自然保护区与当地社区协调发展探究[J]. 南方农业, 2018,12(23):119-120. |
[1] | WU Song, ZHOU Tian, YANG Libin, JIANG Yunbing, PAN Hong, LIU Yongzhi, DU Jun. VOSviewer-Based Visual Analysis on Research Status of Phyllosphere Microorganisms [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 142-150. |
[2] | CHEN Hemin, XIAO Wenfang, CHEN Heming, LV Fubing, ZHU Genfa, LI Zongyan, LI Zuo. Research Progress and Visual Analysis of Orchid Fresh-keeping Based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 151-164. |
[3] | WANG Shaoxin, WANG Baobao, LI Zhongjian, XU Luo, FENG Jianying. Research Context and Trend of Fresh-eating Corn in China [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 8-15. |
[4] | YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41. |
[5] | WANG Lina, YANG Ying, Du Su. Effects of Biochar Application on Saline-alkali Soil: Research Status [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 81-87. |
[6] | CAO Qiumei, WANG Luyi, LI Xiaoman, LI Junda, LIU Mengtian, ZHENG Yao, WANG Lihua. Effects of Effective Microorganisms on Growth Performance, Nutrient Digestibility and Fecal Ammonia Emission of BALB/C Mice [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 124-128. |
[7] | MA Biao, LIU Xuelu, NIAN Lili, LI Liangliang, YANG Yingbo. A Bibliometric Analysis of Research Trends in Soil Remediation from 2011 to 2020 [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 143-151. |
[8] | WANG Aijiao, YE Chunlei, NIU Weimin, CHE Fazhan. Bibliometric Analysis of Giant Knotweed Research at Home and Abroad from 2002 to 2022 [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 134-140. |
[9] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. |
[10] | WANG Yan, XU Meimei, SHAN Lianhui, GOU Huan, TONG Yujia, AN Xinying. Current Status of Research on Major Plant Epidemic Based on Bibliometrics and Patentometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 144-154. |
[11] | SUN Mingyang, XU Shiqiang, ZHANG Wenting, GU Yan, MEI Yu, LI Jingyu, ZHOU Fang, WANG Jihua. Advances in Scientific Research on Andrographis paniculata [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 155-164. |
[12] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[13] | MA Xiao, ZHANG Shihao, ZHANG Fen, LIU Fabo, LIANG Tao, WANG Xiaozhong, CHEN Xinping. Bibliometric Analysis of Reactive Nitrogen Loss in Vegetable System Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 124-132. |
[14] | GUAN Hongyou. Bibliometric Analysis and Visual Expression of Research on Soil Pollution Prevention and Control [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 133-138. |
[15] | JIN Taotao, ZHAO Ming, MAO Jieying, LUO Tianyu, LIU Wei, WANG Qiong. Knowledge Mapping of Glomalin-related Soil Protein: CiteSpace-based Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 100-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||