
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (26): 124-132.doi: 10.11924/j.issn.1000-6850.casb2021-0895
Previous Articles Next Articles
					
													MA Xiao1,2( ), ZHANG Shihao1, ZHANG Fen1,2, LIU Fabo1,2, LIANG Tao1,2,3, WANG Xiaozhong1,2(
), ZHANG Shihao1, ZHANG Fen1,2, LIU Fabo1,2, LIANG Tao1,2,3, WANG Xiaozhong1,2( ), CHEN Xinping1,2
), CHEN Xinping1,2
												  
						
						
						
					
				
Received:2021-09-13
															
							
																	Revised:2021-11-09
															
							
															
							
																	Online:2022-09-15
															
							
																	Published:2022-09-09
															
						Contact:
								WANG Xiaozhong   
																	E-mail:mxmvp1328@163.com;wxz20181017@swu.edu.cn
																					CLC Number:
MA Xiao, ZHANG Shihao, ZHANG Fen, LIU Fabo, LIANG Tao, WANG Xiaozhong, CHEN Xinping. Bibliometric Analysis of Reactive Nitrogen Loss in Vegetable System Based on Web of Science[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 124-132.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0895
| 排名 | 国家 | 发文量/篇 | 占比/% | 总被引次数/次 | 
|---|---|---|---|---|
| 1 | 中国 | 236 | 53.15% | 5618 | 
| 2 | 美国 | 75 | 16.89% | 2366 | 
| 3 | 德国 | 48 | 10.81% | 738 | 
| 4 | 澳大利亚 | 43 | 9.68% | 778 | 
| 5 | 西班牙 | 36 | 8.11% | 739 | 
| 6 | 加拿大 | 28 | 6.31% | 318 | 
| 7 | 意大利 | 20 | 4.50% | 270 | 
| 8 | 英国 | 20 | 4.50% | 955 | 
| 9 | 日本 | 16 | 3.60% | 307 | 
| 10 | 丹麦 | 13 | 2.93% | 551 | 
| 排名 | 国家 | 发文量/篇 | 占比/% | 总被引次数/次 | 
|---|---|---|---|---|
| 1 | 中国 | 236 | 53.15% | 5618 | 
| 2 | 美国 | 75 | 16.89% | 2366 | 
| 3 | 德国 | 48 | 10.81% | 738 | 
| 4 | 澳大利亚 | 43 | 9.68% | 778 | 
| 5 | 西班牙 | 36 | 8.11% | 739 | 
| 6 | 加拿大 | 28 | 6.31% | 318 | 
| 7 | 意大利 | 20 | 4.50% | 270 | 
| 8 | 英国 | 20 | 4.50% | 955 | 
| 9 | 日本 | 16 | 3.60% | 307 | 
| 10 | 丹麦 | 13 | 2.93% | 551 | 
| 排名 | 研究机构 | 发文量/篇 | 总被引次数/次 | 
|---|---|---|---|
| 1 | 中国科学院(CHINESE ACAD SCI) | 111 | 2586 | 
| 2 | 中国农业大学(CHINA AGR UNIV) | 43 | 1836 | 
| 3 | 南京农业大学(NANJING AGR UNIV) | 40 | 1193 | 
| 4 | 中国农业科学院(CHINESE ACAD AGR SCI) | 27 | 357 | 
| 5 | 阿尔梅里亚大学(UNIV ALMERIA) | 24 | 552 | 
| 6 | 佛罗里达大学(UNIV FLORIDA) | 14 | 329 | 
| 7 | 墨尔本大学(UNIV MELBOURNE) | 13 | 185 | 
| 8 | 卡尔斯鲁厄理工学院(KARLSRUHE INST TECHNOL) | 12 | 173 | 
| 9 | 西南大学(SOUTHWEST UNIV) | 12 | 125 | 
| 10 | 浙江大学(ZHEJIANG UNIV) | 12 | 372 | 
| 排名 | 研究机构 | 发文量/篇 | 总被引次数/次 | 
|---|---|---|---|
| 1 | 中国科学院(CHINESE ACAD SCI) | 111 | 2586 | 
| 2 | 中国农业大学(CHINA AGR UNIV) | 43 | 1836 | 
| 3 | 南京农业大学(NANJING AGR UNIV) | 40 | 1193 | 
| 4 | 中国农业科学院(CHINESE ACAD AGR SCI) | 27 | 357 | 
| 5 | 阿尔梅里亚大学(UNIV ALMERIA) | 24 | 552 | 
| 6 | 佛罗里达大学(UNIV FLORIDA) | 14 | 329 | 
| 7 | 墨尔本大学(UNIV MELBOURNE) | 13 | 185 | 
| 8 | 卡尔斯鲁厄理工学院(KARLSRUHE INST TECHNOL) | 12 | 173 | 
| 9 | 西南大学(SOUTHWEST UNIV) | 12 | 125 | 
| 10 | 浙江大学(ZHEJIANG UNIV) | 12 | 372 | 
| 排名 | 期刊名 | 发文量/篇 | 2019—2020年影响因子 | 分区 | 
|---|---|---|---|---|
| 1 | Science of the Total Environment | 31 | 7.963 | Q1 | 
| 2 | Agriculture Ecosystems & Environment | 25 | 5.567 | Q1 | 
| 3 | Agriculture Water Management | 24 | 4.516 | Q1 | 
| 4 | Atmospheric Environment | 19 | 4.798 | Q1 | 
| 5 | Environmental Pollution | 18 | 8.071 | Q1 | 
| 6 | Nutrient Cycling in Agroecosystems | 16 | 3.27 | Q2 | 
| 7 | European Journal of Agronomy | 12 | 5.124 | Q1 | 
| 8 | Geoderma | 10 | 6.114 | Q1 | 
| 9 | Journal of Soils and Sediments | 9 | 3.308 | Q2 | 
| 10 | Pedosphere | 9 | 3.911 | Q2 | 
| 排名 | 期刊名 | 发文量/篇 | 2019—2020年影响因子 | 分区 | 
|---|---|---|---|---|
| 1 | Science of the Total Environment | 31 | 7.963 | Q1 | 
| 2 | Agriculture Ecosystems & Environment | 25 | 5.567 | Q1 | 
| 3 | Agriculture Water Management | 24 | 4.516 | Q1 | 
| 4 | Atmospheric Environment | 19 | 4.798 | Q1 | 
| 5 | Environmental Pollution | 18 | 8.071 | Q1 | 
| 6 | Nutrient Cycling in Agroecosystems | 16 | 3.27 | Q2 | 
| 7 | European Journal of Agronomy | 12 | 5.124 | Q1 | 
| 8 | Geoderma | 10 | 6.114 | Q1 | 
| 9 | Journal of Soils and Sediments | 9 | 3.308 | Q2 | 
| 10 | Pedosphere | 9 | 3.911 | Q2 | 
| 排名 | 标题 | 作者 | 文章类型 | 出版年份 | 本地总被 引频次/次 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Nitrogen balance and groundwater Nitrate contamination: Comparison among three intensive Cropping systems on the North China Plain | JU XT | 研究型论文 | 2006 | 68 | |||||
| 2 | Measurements of nitrous oxide emissions from vegetable production in China | XIONG ZQ | 研究型论文 | 2006 | 56 | |||||
| 3 | Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China | HE FF | 研究型论文 | 2009 | 55 | |||||
| 4 | Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey | THOMPSON RB | 研究型论文 | 2007 | 40 | |||||
| 5 | Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China | WANG JY | 综述 | 2011 | 40 | |||||
| 6 | Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems | ZHU JH | 研究型论文 | 2005 | 38 | |||||
| 7 | Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China | HE FF | 研究型论文 | 2007 | 35 | |||||
| 8 | Study of nitrate leaching and nitrogen fate under Intensive vegetable production pattern in northern China | SONG XZ | 研究型论文 | 2009 | 32 | |||||
| 9 | The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation | ZHU TB | 研究型论文 | 2011 | 32 | |||||
| 10 | Fertiliser-induced nitrous oxide emissions from Vegetable production in the world and the regulating factors: A review | RASHTI MR | 综述 | 2015 | 31 | |||||
| 排名 | 标题 | 作者 | 文章类型 | 出版年份 | 本地总被 引频次/次 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Nitrogen balance and groundwater Nitrate contamination: Comparison among three intensive Cropping systems on the North China Plain | JU XT | 研究型论文 | 2006 | 68 | |||||
| 2 | Measurements of nitrous oxide emissions from vegetable production in China | XIONG ZQ | 研究型论文 | 2006 | 56 | |||||
| 3 | Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China | HE FF | 研究型论文 | 2009 | 55 | |||||
| 4 | Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey | THOMPSON RB | 研究型论文 | 2007 | 40 | |||||
| 5 | Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China | WANG JY | 综述 | 2011 | 40 | |||||
| 6 | Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems | ZHU JH | 研究型论文 | 2005 | 38 | |||||
| 7 | Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China | HE FF | 研究型论文 | 2007 | 35 | |||||
| 8 | Study of nitrate leaching and nitrogen fate under Intensive vegetable production pattern in northern China | SONG XZ | 研究型论文 | 2009 | 32 | |||||
| 9 | The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation | ZHU TB | 研究型论文 | 2011 | 32 | |||||
| 10 | Fertiliser-induced nitrous oxide emissions from Vegetable production in the world and the regulating factors: A review | RASHTI MR | 综述 | 2015 | 31 | |||||
| [1] | DONG J, GRUDA N, LI X, et al. Sustainable vegetable production under changing climate: The impact of elevated CO2 on yield of vegetables and the interactions with environments-A review[J]. Journal of cleaner production, 2020, 253:119920. doi: 10.1016/j.jclepro.2019.119920 URL | 
| [2] | TEI F, DE NEVE S, De HAAN J, et al. Nitrogen management of vegetable crops[J]. Agricultural water management, 2020, 240:106316. doi: 10.1016/j.agwat.2020.106316 URL | 
| [3] | TI C, LUO Y, YAN X. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China[J]. Environmental science and pollution research, 2015, 22(23):18508-18518. doi: 10.1007/s11356-015-5277-x URL | 
| [4] | ZHOU J, LI B, XIA L, et al. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production[J]. Journal of cleaner production, 2019, 225:984-994. doi: 10.1016/j.jclepro.2019.03.191 URL | 
| [5] | ZHOU J, GU B, SCHLESINGER W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific reports, 2016, 6(1):25088 doi: 10.1038/srep25088 URL | 
| [6] | ZHANG X, GU B, Van GRINSVEN H, et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs[J]. Nature communications, 2020, 11(1):4357 doi: 10.1038/s41467-020-18196-z URL | 
| [7] | LIU Q, QIN Y, ZOU J, et al. Annual nitrous oxide emissions from open-air and greenhouse vegetable cropping systems in China[J]. Plant and Soil, 2013, 370(1-2):223-233. doi: 10.1007/s11104-013-1622-3 URL | 
| [8] | DING H, LI S, ZHANG Y, et al. The fate of urea nitrogen applied to a vegetable crop rotation system[J]. Nutrient Cycling in Agroecosystems, 2015, 103(3):279-292. doi: 10.1007/s10705-015-9738-x URL | 
| [9] | MIN J, ZHAO X, SHI W, et al. Nitrogen balance and loss in a greenhouse vegetable system in southeastern China[J]. Pedosphere, 2011, 21(4):464-472. doi: 10.1016/S1002-0160(11)60148-3 URL | 
| [10] | DUAN P, WU Z, ZHANG Q, et al. Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils[J]. Soil biology and biochemistry, 2018, 120:37-47. doi: 10.1016/j.soilbio.2018.01.027 URL | 
| [11] | DUAN P, ZHOU J, FENG L, et al. Pathways and controls of N2O production in greenhouse vegetable production soils[J]. Biology and fertility of soils, 2019, 55(3):285-297. doi: 10.1007/s00374-019-01348-9 URL | 
| [12] | ZHANG J, HE P, DING W, et al. Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China[J]. Environmental pollution, 2021, 268:115004. doi: 10.1016/j.envpol.2020.115004 URL | 
| [13] | SHAN L, HE Y, CHEN J, et al. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Journal of environmental sciences, 2015, 38:14-23. doi: 10.1016/j.jes.2015.04.028 URL | 
| [14] | LV H, LIN S, WANG Y, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system[J]. Environmental pollution, 2019, 245:694-701. doi: 10.1016/j.envpol.2018.11.042 URL | 
| [15] | ZHANG B, LI Q, CAO J, et al. Reducing nitrogen leaching in a subtropical vegetable system[J]. Agriculture, Ecosystems & Environment, 2017, 241:133-141. doi: 10.1016/j.agee.2017.03.006 URL | 
| [16] | CHEN Y, ZHANG J, XU X, et al. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China[J]. Agricultural water management, 2018, 210:165-170. doi: 10.1016/j.agwat.2018.07.043 URL | 
| [17] | Rezaei Rashti M, Wang W, Moody P, et al. Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: A review[J]. Atmospheric Environment, 2015, 112:225-233. doi: 10.1016/j.atmosenv.2015.04.036 URL | 
| [18] | WANG X, ZOU C, GAO X, et al. Nitrate leaching from open-field and greenhouse vegetable systems in China: a meta-analysis[J]. Environmental science and pollution research, 2018, 25(31):31007-31016. doi: 10.1007/s11356-018-3082-z URL | 
| [19] | LI T, ZHANG W, YIN J, et al. Enhanced‐efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global change biology, 2017, 24(2):e511-e521. doi: 10.1111/gcb.13918 URL | 
| [20] | LIU B, WANG X, MA L, et al. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis[J]. Environmental pollution, 2021, 269:116143. doi: 10.1016/j.envpol.2020.116143 URL | 
| [21] | ZHOU F, GUO H, HO Y, et al. Scientometric analysis of geostatistics using multivariate methods[J]. Scientometrics, 2007, 73(3):265-279. doi: 10.1007/s11192-007-1798-5 URL | 
| [22] | 孙波, 王晓玥, 吕新华. 我国60年来土壤养分循环微生物机制的研究历程——基于文献计量学和大数据可视化分析[J]. 植物营养与肥料学报, 2017, 23(6):1590-1601. | 
| [23] | 陈香, 李卫民, 刘勤. 基于文献计量的近30年国内外土壤微生物研究分析[J]. 土壤学报, 2020, 57(6):1458-1470. | 
| [24] | KASAVAN S, YUSOFF S, RAHMAT FAKRI M F, et al. Plastic pollution in water ecosystems: A bibliometric analysis from 2000 to 2020[J]. Journal of cleaner production, 2021, 313:127946. doi: 10.1016/j.jclepro.2021.127946 URL | 
| [25] | BAR-ILAN J.  Which h-index? — A comparison of WoS, Scopus and Google Scholar[J]. Scientometrics, 2008, 74(2):257-271. doi: 10.1007/s11192-008-0216-y URL | 
| [26] | Van ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538. doi: 10.1007/s11192-009-0146-3 URL | 
| [27] | 李兆耀, 王宁, 温正,等. 水足迹研究演变与中外研究对比——基于文献计量分析[J]. 生态经济, 2020, 36(11):180-187. | 
| [28] | 刘波, 李学斌, 陈林,等. 基于文献计量分析的土壤固碳研究进展[J]. 土壤通报, 2021, 52(1):211-220. | 
| [29] | 严陶韬, 高婷, 周之栋,等. 基于文献计量的生物炭土壤效应分析[J]. 江苏农业科学, 2021, 49(4):191-199. | 
| [30] | 曹梦, 李勇, 勾宇轩,等. 基于知识图谱的土壤中抗生素研究进展分析[J]. 农业资源与环境学报, 2020, 37(5):627-635. | 
| [31] | 杜志鹏, 苏德纯. 稻田重金属污染修复治理技术及效果文献计量分析[J]. 农业环境科学学报, 2018, 37(11):2409-2417. | 
| [32] | 刘秋霞, 吴汉卿, 黄正来. 基于全球文献计量的小麦响应气候变暖的研究[J]. 中国农学通报, 2019, 35(23):142-151. | 
| [33] | MARŠIĆ N K, ATURM M, ZUPANC V, et al. Quality of white cabbage yield and potential risk of ground water nitrogen pollution, as affected by nitrogen fertilisation and irrigation practices[J]. Journal of the science of food and agriculture, 2012, 92(1):92-98. doi: 10.1002/jsfa.4546 URL | 
| [34] | ZHAO Y, LUO J, CHEN X, et al. Greenhouse tomato-cucumber yield and soil N leaching as affected by reducing N rate and adding manure: a case study in the Yellow River Irrigation Region China[J]. Nutrient cycling in agroecosystems, 2012, 94(2-3):221-235. doi: 10.1007/s10705-012-9535-8 URL | 
| [35] | MIN J, ZHANG H, SHI W. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production[J]. Agricultural water management, 2012, 111:53-59. doi: 10.1016/j.agwat.2012.05.003 URL | 
| [36] | YAN H, XIE L, GUO L, et al. Characteristics of nitrous oxide emissions and the affecting factors from vegetable fields on the North China Plain[J]. Journal of environmental management, 2014, 144:316-321. doi: 10.1016/j.jenvman.2014.06.004 URL | 
| [37] | Yao Z, Liu C, Dong H, et al. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations[J]. Environmental pollution, 2015, 196:89-97. doi: 10.1016/j.envpol.2014.09.010 URL | 
| [38] | LI B, FAN C H, XIONG Z Q, et al. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China[J]. Biogeosciences, 2015, 12(6):2003-2017. doi: 10.5194/bg-12-2003-2015 URL | 
| [39] | DUAN P, ZHANG Q, ZHANG X, et al. Mechanisms of mitigating nitrous oxide emissions from vegetable soil varied with manure, biochar and nitrification inhibitors[J]. Agricultural and forest meteorology, 2019, 278:107672. doi: 10.1016/j.agrformet.2019.107672 URL | 
| [40] | ZHANG X, DUAN P, WU Z, et al. Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil[J]. Science of the total environment, 2019, 687:433-440. doi: 10.1016/j.scitotenv.2019.06.128 URL | 
| [41] | WANG X, ZOU C, GAO X, et al. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis[J]. Environmental pollution, 2018, 239:375-383. doi: 10.1016/j.envpol.2018.03.090 URL | 
| [42] | YANG T, LI F, ZHOU X, et al. Impact of nitrogen fertilizer, greenhouse, and crop species on yield-scaled nitrous oxide emission from vegetable crops: A meta-analysis[J]. Ecological indicators, 2019, 105:717-726. doi: 10.1016/j.ecolind.2019.02.001 URL | 
| [43] | QASIM W, XIA L, LIN S, et al. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis[J]. Environmental pollution, 2021, 272:116372. doi: 10.1016/j.envpol.2020.116372 URL | 
| [44] | WANG X, ZOU C, ZHANG Y, et al. Environmental impacts of pepper (Capsicum annuum L) production affected by nutrient management: A case study in southwest China[J]. Journal of cleaner production, 2018, 171:934-943. doi: 10.1016/j.jclepro.2017.09.258 URL | 
| [45] | ZHANG F, LIU F, MA X, et al. Greenhouse gas emissions from vegetables production in China[J]. Journal of cleaner production, 2021, 317:128449. doi: 10.1016/j.jclepro.2021.128449 URL | 
| [1] | WANG Shaoxin, WANG Baobao, LI Zhongjian, XU Luo, FENG Jianying. Research Context and Trend of Fresh-eating Corn in China [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 8-15. | 
| [2] | MA Biao, LIU Xuelu, NIAN Lili, LI Liangliang, YANG Yingbo. A Bibliometric Analysis of Research Trends in Soil Remediation from 2011 to 2020 [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 143-151. | 
| [3] | ZHANG Xinrui, FENG Qixin, AN Qiyun, CHENG Li, LI Chongwei. Research Progress and Status of Perilla frutescens Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 144-152. | 
| [4] | GUAN Hongyou. Bibliometric Analysis and Visual Expression of Research on Soil Pollution Prevention and Control [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 133-138. | 
| [5] | LU Zhenping, TIAN Ying. Current Situation and Removal Methods of Pesticide Residues in Vegetables and Fruits in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 131-137. | 
| [6] | WENG Xiaohong, SUI Xin. Research on Forest Soil Microbial Diversity Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 157-164. | 
| [7] | Wu Wenyan, Cheng Zhichao, Li Mengsha, Sui Xin, Zeng Xiannan. Development of Rhizobium Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 109-117. | 
| [8] | Li Jingchao, She Rong, Yang Xiaoyan. Research Status of Soil Microbial Metagenomics: Based on Citespace Bibliometric Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 142-152. | 
| [9] | Tian Gengzhi. Vegetables and Fruits at the Production Base: Assessment of Pesticide Residue Exposure and Early Warning of Risk [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 112-116. | 
| [10] | Jia Kuankuan, Shu Yingge, Zhang Zhongliang, Wang Yuan, Ren Minghui. Bibliometric Analysis of Soil Acidification of Tea Garden Based on CNKI Database [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 119-125. | 
| [11] | Wu Guifen, Long Minghua, Qiao Shuangyu. The Regulatory Mechanism of Polycyclic Aromatic Hydrocarbon in Vegetables [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 42-48. | 
| [12] | Jiang Lu, Liu Yang, He Hui, Qu Ying, Zhang Lu. The Research Status of Melatonin Affecting Leaf Senescence— Based on Bibliometric Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 158-164. | 
| [13] | Wu Mingjie, Wang He, Wu Yining, Wang Weihua, Zou Hongfei. Research Status of Polycyclic Aromatic Hydrocarbon Degradation in Soil Environment Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2020, 36(5): 60-67. | 
| [14] | Kong Lingbo, Wang Jingjing, Lin Qiao, He Wei, Yang Xiaowei. The Patent Development Trend in Global Maize Molecular Breeding [J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 121-129. | 
| [15] | Cheng Zhichao, Wang Wenhao, Sui Xin, Zeng Xiannan. Research Hotspots and Trends of Wetland Soil Microbiology Based on Bibliometric Analysis [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 145-152. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||