Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (32): 157-164.doi: 10.11924/j.issn.1000-6850.casb2020-0614
Qin Haipeng(), Wang Bo, Liao Xuzheng, Hu Shikang, Sun Chengbo(
)
Received:
2020-11-19
Revised:
2021-05-25
Online:
2021-11-15
Published:
2022-01-07
Contact:
Sun Chengbo
E-mail:1149522321@qq.com;scb248@126.com
CLC Number:
Qin Haipeng, Wang Bo, Liao Xuzheng, Hu Shikang, Sun Chengbo. Effects of Temperature Mutation on the Intestinal and Water Microbial Diversity of Marsupenaeus Japonicus in the Biofloc System[J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 157-164.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0614
样品 | Ace指数 | Chao1指数 | Observed OTUs | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
Qa | 1326.38±259.59 | 1325.95±242.01 | 852±88.88 | 5.32±0.22 | 0.92±0.02 |
Qb | 1939.39±214.58 | 1991.25±232.30 | 1264.33±83.48 | 6.61±0.17 | 0.96±0.01 |
Ha | 1486.55±157.99 | 1523.58±103.66 | 985.33±99.97 | 5.81±0.16 | 0.94±0.01 |
Hb | 1798.14±324.27 | 1843.05±312.27 | 1313.67±192.04 | 6.84±0.82 | 0.95±0.03 |
a | 1427.99±134.20 | 1417.81±163.22 | 953±89.37 | 5.80±0.30 | 0.93±0.02 |
b | 1365.61±386.06 | 1373.76±327.07 | 944±117.66 | 6.47±0.10 | 0.96±0.01 |
A | 1196.43±991.52 | 1178.70±85.35 | 799±76.15 | 5.61±0.69 | 0.93±0.03 |
B | 1278.51±590.97 | 1287.59±530.90 | 879.67±320.81 | 5.76±0.63 | 0.91±0.03 |
样品 | Ace指数 | Chao1指数 | Observed OTUs | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
Qa | 1326.38±259.59 | 1325.95±242.01 | 852±88.88 | 5.32±0.22 | 0.92±0.02 |
Qb | 1939.39±214.58 | 1991.25±232.30 | 1264.33±83.48 | 6.61±0.17 | 0.96±0.01 |
Ha | 1486.55±157.99 | 1523.58±103.66 | 985.33±99.97 | 5.81±0.16 | 0.94±0.01 |
Hb | 1798.14±324.27 | 1843.05±312.27 | 1313.67±192.04 | 6.84±0.82 | 0.95±0.03 |
a | 1427.99±134.20 | 1417.81±163.22 | 953±89.37 | 5.80±0.30 | 0.93±0.02 |
b | 1365.61±386.06 | 1373.76±327.07 | 944±117.66 | 6.47±0.10 | 0.96±0.01 |
A | 1196.43±991.52 | 1178.70±85.35 | 799±76.15 | 5.61±0.69 | 0.93±0.03 |
B | 1278.51±590.97 | 1287.59±530.90 | 879.67±320.81 | 5.76±0.63 | 0.91±0.03 |
门 | 丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
Qa | Qb | Ha | Hb | a | b | A | B | |
Proteobacteria | 57.36±25.76 | 44.45±2.22 | 79.66±2.14 | 45.44±6.05 | 84.42±8.11 | 82.5±4.65 | 82.1±9.86 | 78.17±5.93 |
Bacteroidetes | 36.45±23.93 | 16.07±1.19 | 13.53±1.33 | 16.03±2.91 | 5.66±3.02 | 10.02±3.24 | 15.2±9.55 | 7.77±0.83 |
Actinobacteria | 3.19±2.08 | 5.33±0.69 | 1.68±0.38 | 4.33±1.35 | 3.41±4.04 | 1.76±1.75 | 0.49±0.32 | 4.38±3.36 |
Chloroflexi | 0.26±0.15 | 19.02±3.09 | 0.21±0.09 | 17.13±12.54 | 2.03±3.2 | 0.63±0.95 | 0.05±0.06 | 1.76±2 |
TM7 | 0.01±0 | 3.43±0.36 | 0.02±0.02 | 2.02±0.83 | 1.17±1.88 | 0.67±1.09 | 0.03±0.02 | 3.57±1.44 |
Acidobacteria | 0.03±0.03 | 5.42±0.22 | 0.01±0.01 | 5.98±1.34 | 0.27±0.27 | 0.3±0.45 | 0.01±0 | 0.25±0.04 |
门 | 丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
Qa | Qb | Ha | Hb | a | b | A | B | |
Proteobacteria | 57.36±25.76 | 44.45±2.22 | 79.66±2.14 | 45.44±6.05 | 84.42±8.11 | 82.5±4.65 | 82.1±9.86 | 78.17±5.93 |
Bacteroidetes | 36.45±23.93 | 16.07±1.19 | 13.53±1.33 | 16.03±2.91 | 5.66±3.02 | 10.02±3.24 | 15.2±9.55 | 7.77±0.83 |
Actinobacteria | 3.19±2.08 | 5.33±0.69 | 1.68±0.38 | 4.33±1.35 | 3.41±4.04 | 1.76±1.75 | 0.49±0.32 | 4.38±3.36 |
Chloroflexi | 0.26±0.15 | 19.02±3.09 | 0.21±0.09 | 17.13±12.54 | 2.03±3.2 | 0.63±0.95 | 0.05±0.06 | 1.76±2 |
TM7 | 0.01±0 | 3.43±0.36 | 0.02±0.02 | 2.02±0.83 | 1.17±1.88 | 0.67±1.09 | 0.03±0.02 | 3.57±1.44 |
Acidobacteria | 0.03±0.03 | 5.42±0.22 | 0.01±0.01 | 5.98±1.34 | 0.27±0.27 | 0.3±0.45 | 0.01±0 | 0.25±0.04 |
属 | 丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
Qa | Qb | Ha | Hb | a | b | A | B | |
Polaribacter | 8.6±14.38 | 0.07±0.05 | 1.17±0.97 | 0.06±0.03 | 0.31±0.07 | 0.2±0.29 | 0.31±0.3 | 0.27±0.2 |
Roseivivax | 7.68±12.48 | 0.06±0.01 | 6.93±8.27 | 0.05±0.03 | 0.33±0.1 | 0.26±0.15 | 0.11±0.06 | 0.21±0.26 |
Marivita | 7.41±5.2 | 0.11±0.04 | 14.85±1.63 | 0.12±0.09 | 2.08±1.77 | 0.62±0.29 | 0.77±0.36 | 0.06±0.03 |
Winogradskyella | 6.16±10.08 | 1.34±0.2 | 0.33±0.23 | 1.23±0.23 | 0.07±0.03 | 0.11±0.05 | 0.34±0.3 | 0.07±0.05 |
Vibrio | 1.6±0.4 | 0.18±0.01 | 1.78±0.55 | 0.29±0.26 | 10.79±9.29 | 4.83±1.49 | 2.17±1.86 | 3.48±2.6 |
Psychroserpens | 1.56±2.05 | 3.74±0.24 | 0.27±0.1 | 3.69±0.37 | 0.29±0.2 | 0.68±0.15 | 1.66±1.4 | 0.71±0.59 |
Octadecabacter | 1.28±0.59 | 0.61±0.07 | 2.44±1.08 | 0.63±0.14 | 2.63±1.14 | 10.87±4.99 | 4.52±0.88 | 2.7±1.44 |
Tenacibaculum | 0.53±0.54 | 0.71±0.14 | 0.42±0.04 | 0.3±0.15 | 0.34±0.31 | 2.48±1.24 | 0.79±0.22 | 3.19±1.75 |
Ruegeria | 0.15±0.05 | 0.65±0.09 | 0.28±0.19 | 0.41±0.14 | 2.99±1.45 | 2.74±0.73 | 4.43±0.82 | 2.93±1.02 |
Photobacterium | 0.11±0.1 | 0.06±0.03 | 0.21±0.08 | 0.14±0.14 | 13.53±12.05 | 8.11±2.9 | 0.25±0.29 | 0.87±0.24 |
Ardenscatena | 0.1±0.13 | 12.69±1.6 | 0.04±0.01 | 13.31±11.8 | 1.85±2.99 | 0.43±0.74 | 0.01±0.01 | 1.66±1.88 |
属 | 丰度/% | |||||||
---|---|---|---|---|---|---|---|---|
Qa | Qb | Ha | Hb | a | b | A | B | |
Polaribacter | 8.6±14.38 | 0.07±0.05 | 1.17±0.97 | 0.06±0.03 | 0.31±0.07 | 0.2±0.29 | 0.31±0.3 | 0.27±0.2 |
Roseivivax | 7.68±12.48 | 0.06±0.01 | 6.93±8.27 | 0.05±0.03 | 0.33±0.1 | 0.26±0.15 | 0.11±0.06 | 0.21±0.26 |
Marivita | 7.41±5.2 | 0.11±0.04 | 14.85±1.63 | 0.12±0.09 | 2.08±1.77 | 0.62±0.29 | 0.77±0.36 | 0.06±0.03 |
Winogradskyella | 6.16±10.08 | 1.34±0.2 | 0.33±0.23 | 1.23±0.23 | 0.07±0.03 | 0.11±0.05 | 0.34±0.3 | 0.07±0.05 |
Vibrio | 1.6±0.4 | 0.18±0.01 | 1.78±0.55 | 0.29±0.26 | 10.79±9.29 | 4.83±1.49 | 2.17±1.86 | 3.48±2.6 |
Psychroserpens | 1.56±2.05 | 3.74±0.24 | 0.27±0.1 | 3.69±0.37 | 0.29±0.2 | 0.68±0.15 | 1.66±1.4 | 0.71±0.59 |
Octadecabacter | 1.28±0.59 | 0.61±0.07 | 2.44±1.08 | 0.63±0.14 | 2.63±1.14 | 10.87±4.99 | 4.52±0.88 | 2.7±1.44 |
Tenacibaculum | 0.53±0.54 | 0.71±0.14 | 0.42±0.04 | 0.3±0.15 | 0.34±0.31 | 2.48±1.24 | 0.79±0.22 | 3.19±1.75 |
Ruegeria | 0.15±0.05 | 0.65±0.09 | 0.28±0.19 | 0.41±0.14 | 2.99±1.45 | 2.74±0.73 | 4.43±0.82 | 2.93±1.02 |
Photobacterium | 0.11±0.1 | 0.06±0.03 | 0.21±0.08 | 0.14±0.14 | 13.53±12.05 | 8.11±2.9 | 0.25±0.29 | 0.87±0.24 |
Ardenscatena | 0.1±0.13 | 12.69±1.6 | 0.04±0.01 | 13.31±11.8 | 1.85±2.99 | 0.43±0.74 | 0.01±0.01 | 1.66±1.88 |
[1] | 王克行. 虾蟹类增养殖学[M]. 北京: 中国农业出版社, 1997, 8:18. |
[2] | 李义军, 李婷, 王平, 等. 日本囊对虾(Marsupenaeus japonicus)3个野生种群和1个养殖种群的形态差异与判别分析[J]. 海洋与湖沼, 2010, 41(4):500-504. |
[3] | 徐涵, 熊慧, 吴亚林, 等. 养殖密度、底质类型对日本囊对虾生长、存活的影响[J]. 湖北农业科学, 2015, 54(4):923-925. |
[4] | 韩琳, 王秀华, 杨冰, 等. 一例日本囊对虾暴发性死亡的病原分析[J]. 水产学报, 2018, 42(3):431-441. |
[5] | 陈学雷, 林琼武, 李少菁, 等. 日本对虾仔虾相残的实验研究[J]. 厦门大学学报:自然科学版, 2003, 42(3):358-362. |
[6] |
Tacon A, Forster I P. Aquafeeds and the environment: policy implications[J]. Aquaculture, 2003, 226(1):181-189.
doi: 10.1016/S0044-8486(03)00476-9 URL |
[7] | 熊向英, 王贤丰, 彭银辉, 等. 健康和患病卵形鲳鲹肠道菌群结构的差异[J]. 水产学报, 2019, 43(5):1317-1325. |
[8] |
Ma C, Chen C, Jia L, et al. Comparison of the intestinal microbiota composition and function in healthy and diseased Yunlong Grouper[J]. AMB Express, 2019, 9(1):1-11.
doi: 10.1186/s13568-018-0728-7 URL |
[9] | 王春忠, 林国荣, 严涛, 等. 长毛对虾海水养殖环境以及虾肠道微生物群落结构研究[J]. 水产学报, 2014, 38(5):706-712. |
[10] |
Wang C, Lin G, Yan T, et al. The cellular community in the intestine of the shrimp Penaeus penicillatus and its culture environments[J]. Fisheries science, 2014, 80(5):1001-1007.
doi: 10.1007/s12562-014-0765-3 URL |
[11] | Zhou J, Wu L, Deng Y, et al. Reproducibility and quantitation of amplicon sequencing-based detection[J]. Multidisciplinary Journal of Microbial Ecology, 2011, 5(8):1303-1313. |
[12] | Sun Z, Xuan Y, Zhang H, et al. Bacterial diversity in the Penaeus vannamei Boone intestine and aquaculture environment[J]. Journal of Fishery Sciences of China, 2016. |
[13] |
Huang F, Pan L, Song M, et al. Microbiota assemblages of water, sediment, and intestine and their associations with environmental factors and shrimp physiological health[J]. Applied microbiology and biotechnology, 2018, 102(19):8585-8598.
doi: 10.1007/s00253-018-9229-5 pmid: 30039332 |
[14] |
Martínez-Córdova L R, Martínez-Porchas M, Emerenciano M G C, et al. From microbes to fish the next revolution in food production[J]. Critical Reviews in Biotechnology, 2017, 37(3):287-295.
doi: 10.3109/07388551.2016.1144043 pmid: 26863376 |
[15] |
Wong S, Rawls J F. Intestinal microbiota composition in fishes is influenced by host ecology and environment[J]. Molecular Ecology, 2012, 21(13):3100-3102.
doi: 10.1111/j.1365-294X.2012.05646.x URL |
[16] | 郭昱廷, 彭剑峰, 宋永会, 等. 温度对ABR反应器处理效果和微生物群落结构的影响[J]. 环境科学学报, 2012, 32(7):1542-1548. |
[17] | 钱苏雯, 王如意, 孙培德, 等. 水温变化对EBPR系统除磷效果响应机制的数值模拟研究[J]. 环境科学学报, 2010(12):2420-2429. |
[18] |
Oehmen A, Lemos P C, Carvalho G, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water research, 2007, 41(11):2271-2300.
doi: 10.1016/j.watres.2007.02.030 URL |
[19] | 王亚宜, 王淑莹, 彭永臻, 等. 污水有机碳源特征及温度对反硝化聚磷的影响[J]. 环境科学学报, 2006, 26(2):186-192. |
[20] |
Zhang M, Sun Y, Chen K, et al. Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources[J]. Aquaculture, 2014, 434:449-455.
doi: 10.1016/j.aquaculture.2014.09.008 URL |
[21] | 刘新春, 吴成强, 张昱, 等. PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析[J]. 生态学报, 2005(04):186-191. |
[22] |
Luo H F, Qi H Y, Zhang H X. Assessment of the Bacterial Diversity in Fenvalerate-Treated Soil[J]. World Journal of Microbiology & Biotechnology, 2004, 20(5):509-515.
doi: 10.1023/B:WIBI.0000040401.46606.a4 URL |
[23] | 雷衍之. 养殖水环境化学实验[M]. 北京: 中国农业出版社, 2006:49-70. |
[24] | 罗亮, 李卓佳, 张家松, 等. 对虾精养池塘碳,氮和异养细菌含量的变化及其相关性研究[J]. 南方水產科學, 2011, 7(5):24-29. |
[25] |
Li M, Lovell R T. Effect of dietary protein concentration on nitrogenous waste in intensively fed catfish ponds[J]. Journal of the World Aquaculture Society, 1992, 23(2):122-127.
doi: 10.1111/jwas.1992.23.issue-2 URL |
[26] | Weber J T, Mintz E D, Canizares R, et al. Epidemic cholera in Ecuador: multidrug-resistance and transmission by water and seafood[J]. Epidemiology & infection, 1994, 112(1):1-11. |
[27] | 毕冬, 韩相奎, 叶长兵, 等. 不同温度下异波折板反应器处理生活污水的研究[J]. 中国资源综合利用, 2008, 26(2):6-8. |
[28] | 吴鹏, 陆爽君, 徐乐中, 等. 温度对ABR-MBR复合工艺处理生活污水的影响及其微生物群落分析[J]. 环境科学, 2014, 35(9):3466-3472. |
[29] | Haslun J, Correia E, Strychar K, et al. Characterization of Bioflocs in a No Water Exchange Super-intensive System for the Production of Food Size Pacific White Shrimp Litopenaeus vannamei[J]. International Journal of Aquaculture, 2012, 2(6):29-39. |
[30] | 罗固源, 豆俊峰, 吉芳英, 等. 螺旋升流式反应器脱氮除磷效果及其特性的研究[J]. 环境科学学报, 2004(01):15-19. |
[31] | 杨章武, 杨铿, 张哲, 等. 基于宏基因组测序技术分析凡纳滨对虾育苗中生物絮团细菌群落结构[J]. 福建水产, 2015, 37(2):91-97. |
[32] |
Rungrassamee W, Klanchui A, Maibunkaew S, et al. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon)[J]. PloS one, 2014, 9(3):e91853.
doi: 10.1371/journal.pone.0091853 URL |
[33] | Zhao P, Huang J, Wang X H, et al. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus[J]. Aquaculture, 2012, 354:97-106. |
[34] |
Sakami T, Fujioka Y, Shimoda T. Comparison of microbial community structures in intensive and extensive shrimp culture ponds and a mangrove area in Thailand[J]. Fisheries Science, 2010, 74(4):889-898.
doi: 10.1111/fis.2008.74.issue-4 URL |
[35] |
Wagner M R A, Amann R I, Lemmer H, et al. Probing Activated Sludge with Oligonucleotides Specific for Proteobacteria: Inadequacy of Culture-Dependent Methods for Describing Microbial Community Structure[J]. Applied and Environmental Microbiology, 1993, 59(5):1520-1525.
doi: 10.1128/aem.59.5.1520-1525.1993 pmid: 8517747 |
[36] | Miura Y, Hiraiwa M N, Ito T, et al. Bacterial community structures in MBRs treating municipal wastewater: Relationship between community stability and reactor performance[J]. Water Research, 2007, 41(3):0-637. |
[37] | Wagner M, Rath G, Amann R, et al. In situIdentification of Ammonia-oxidizing Bacteria[J]. Systematic & Applied Microbiology, 1995, 18(2):251-264. |
[38] | Daims H, Brühl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set[J]. Systematic & Applied Microbiology, 1999, 22(3):434. |
[39] |
Das S, Ward L R, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture[J]. Applied Microbiology and Biotechnology, 2008, 81(3):589-589.
doi: 10.1007/s00253-008-1747-0 URL |
[40] |
Kim S, Pang Z, Seo H, et al. Effect of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae[J]. Aquaculture Research, 2014, 45(2):362-371.
doi: 10.1111/are.2014.45.issue-2 URL |
[ 41 Manan H, Amin-Safwan A, Ikhwanuddin M. Effects of Biofloc Application on Survival Rate, Growth Performance and Specific Growth Rate of Pacific Whiteleg Shrimp, Penaeus vannamei Culture in Closed Hatchery System[J]. Pakistan Journal of Biological Sciences: PJBS, 2020, 23(12):1563-1571.
doi: 10.3923/pjbs.2020.1563.1571 URL |
|
[42] |
Apprill A. Marine animal microbiomes: toward understanding host-microbiome interactions in a changing ocean[J]. Frontiers in Marine Science, 2017, 4:222.
doi: 10.3389/fmars.2017.00222 URL |
[1] | WANG Yan, WANG Liwei, ZHAO Hongyan, ZHAO Min, YANG Hongyan. Characteristics of Nutrients and Microbial Community Composition of Different Panax ginseng Cultivation Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 60-68. |
[2] | SHA Yuexia, HUANG Zeyang, WEI Zhaoqing. Impact of Microbial Agent Broadcast Application on Microbial Community Structure of Saline-alkali Soil in Shizuishan of Ningxia [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 82-90. |
[3] | YANG Xiaoxiang, HUANG Xiaoqin, ZHANG Lei, ZHANG Zhongmei, XIAN Yunxi, ZHOU Xiquan, LIU Yong. Biocontrol Fungus Coniothyrium minitans: Effects on Microbial Community Structure in Oilseed Rape Rhizosphere Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 92-98. |
[4] | DU Qian, LI Lin, LIU Tienan, LIANG Suyu. Effects of Compound Microbial Fertilizer on Soil Microbial Diversity in Saline Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 38-43. |
[5] | Gao Jingjing, Liu Hongmei, Yang Dianlin, Li Ruiying, Zhu Ping, Gao Hongjun, Li Jing, Zhang Xiuzhi, Peng Chang. Effects of Tillage Patterns on Functional Diversity of Soil Microbial Community in Maize Field [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 98-104. |
[6] | Dong Xinxu, Fan Limin, Song Chao, Zheng Yao, Qiu Liping, Meng Shunlong, Chen Jiazhang. Effects of Different Feeding Rates on Growth, Water Quality and Microbial Community Metabolic Diversity of Cultured Tilapia [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 146-154. |
[7] | Nie Zhijuan, Shao Nailin, Zhang Zhiwei, Hu Jiawen, Xu Pao, Xu Gangchun. Intestine of Acanthopagrus schlegelii and Microbial Communities in the Aquatic Water: Study in Two Culture Modes [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 155-164. |
[8] | Luo Wanyi, Lei Zexiang, Li Yiyong. The Function, Structure and Regulation of Microbial Community in Biofloc: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 91-96. |
[9] | Shen Fangfang, Zhang Zhe, Yuan Yinghong, . Effects of Biochar and Organic Manure Combined Application on Soil Enzyme Activities and Microbial Community Component in Upland Red Soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 65-74. |
[10] | Chen Juan, Liu Zhoubin, Ou Lijun. Microbial Diversity Change in Different Soil Types After Cultivating Pepper [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 84-93. |
[11] | Dong Xinxu, Fan Limin, Qiu Liping, Li Dandan, Dong Yuanyuan, Guo Nannan, Liu Xiangli, Qin Lu, Deng Ru, Chen Jiazhang. Metabolic Diversity of Microbial Communities in the Lower Reaches of the Yangtze River and the Influencing Factors [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 58-65. |
[12] | Dai Junjun, Shu Rui, Liu Jian, Zhang Yuping, Zhang Lili, Chen Ming, Zhao Ping, Liu Zhen. Benomyl Stress: Effects on the Microbial Community Structure in the Intestine of Honey Bees [J]. Chinese Agricultural Science Bulletin, 2020, 36(26): 136-140. |
[13] | Li Jianhua, Li Hua, Gao Chunhua, Jin Dongsheng, Lu Jinjing. Effects of Engineering Reclamation Measures on Soil Quality Evolution Characteristics of Mining Subsidence Area in Southeastern Shanxi [J]. Chinese Agricultural Science Bulletin, 2020, 36(17): 62-70. |
[14] | . The Bacterial Community Structure of Culture System Based on Biofloc Technology: A Review [J]. Chinese Agricultural Science Bulletin, 2019, 35(8): 146-151. |
[15] | . Biological Fertilizer: Effects on Enzyme Activity and Microbial Community Structure in Rice Soil [J]. Chinese Agricultural Science Bulletin, 2019, 35(27): 106-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||