Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (2): 1-6.doi: 10.11924/j.issn.1000-6850.casb2021-0421
CUI Rufei(), LI Tai, WANG Yuguang(
)
Received:
2021-04-19
Revised:
2021-06-18
Online:
2022-01-15
Published:
2022-02-25
Contact:
WANG Yuguang
E-mail:cuirufeiydcg@163.com;wangyuguang@hlju.edu.cn
CLC Number:
CUI Rufei, LI Tai, WANG Yuguang. Sugar Beet Soil Microorganisms Under Continuous Cropping Mode: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 1-6.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0421
[1] |
WANG M, WU C, CHENG Z, et al. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping[J]. Plos one, 2014, 9(10):e111040.
doi: 10.1371/journal.pone.0111040 URL |
[2] | 吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视[J]. 中国生态农业学报, 2020, 28(6):775-793. |
[3] | 马金骏, 江解增, 曾晓萍, 等. 设施茄子连作障碍防控研究[J]. 长江蔬菜, 2020(12):27-30. |
[4] | 胡元森, 吴坤, 李翠香, 等. 酚酸物质对黄瓜幼苗及枯萎病菌菌丝生长的影响[J]. 生态学杂志, 2007, 172(11):1738-1742. |
[5] | 赵尊练, 史联联, 阎玉让, 等. 克服线辣椒连作障碍的施肥方案研究[J]. 干旱地区农业研究, 2006(5):77-80,114. |
[6] | 李森, 姚钦, 刘俊杰, 等. 大豆重迎茬研究进展[J]. 大豆科学, 2020, 39(2):317-324. |
[7] | 刘建国, 张伟, 李彦斌, 等. 新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J]. 中国农业科学, 2009, 42(2):725-733. |
[8] | 焦坤, 陈明娜, 潘丽娟, 等. 长期连作对不同花生品种生长发育、产量与品质的影响[J]. 中国农学通报, 2015, 31(15):44-51. |
[9] | 喻敏, 余均沃, 曹培根, 等. 百合连作土壤养分及物理性状分析[J]. 土壤通报, 2004(3):377-379. |
[10] |
YASIR A, MUHAMMAD T, SHENG L, et al. Long-Term Monoculture Negatively Regulates Fungal Community Composition and Abundance of Tea Orchards[J]. Agronomy, 2019, 9(8):466.
doi: 10.3390/agronomy9080466 URL |
[11] | 马媛媛, 李玉龙, 来航线, 等. 连作番茄根区病土对番茄生长及土壤线虫与微生物的影响[J]. 中国生态农业学报, 2017, 25(5):730-739. |
[12] | GENG G, LV C, STEVANATO P, et al. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet[J]. Int J Mol Sci, 2019(23):5910. |
[13] |
GUI G, JI Y. Sugar Beet Production and Industry in China[J]. Sugar tech, 2015, 17(1):13-21.
doi: 10.1007/s12355-014-0353-y URL |
[14] | 魏良民, 冯建忠. 连作对甜菜生长和块根产量及含糖的影响[J]. 中国糖料, 1999(3):20-22. |
[15] | 孙文庆, 康亚龙, 刘建国, 等. 加工番茄连作对土壤微生物群落多样性的影响[J]. 西北农业学报, 2017, 26(7):1099-1110. |
[16] | 乔蓬蕾, 吴凤芝, 周新刚. 连作对作物根际土壤微生物菌群及酶活性影响[J]. 沈阳农业大学学报, 2013, 44(5):524-530. |
[17] | HUANG L, SONG L, XIA X, et al. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture.[J]. J chem ecol, 2013(2):42-232. |
[18] | 马琳. 土壤微生物多样性影响因素及研究方法综述[J]. 乡村科技, 2019(33):112-113. |
[19] |
SHUAIMIN C, TATOBA R WAGHMODE, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7(4):136.
doi: 10.1186/s40168-019-0750-2 URL |
[20] | SUN L, GAO J, HUANG T, et al. Parental material and cultivation determine soil bacterial community structure and fertility[J]. FEMS microbiol ecol, 2014(1):1-10. |
[21] | 保丽美, 丁亚芳, 魏云林, 等. 三七连作与休闲土壤真菌群落组成与多样性分析[J]. 中药材, 2021(1):7-12. |
[22] |
EVGENIA B, YAKOV K. Active microorganisms in soil: Critical review of estimation criteria and approaches[J]. Soil biology and biochemistry, 2013, 67:192-211.
doi: 10.1016/j.soilbio.2013.08.024 URL |
[23] |
SYRIE M, HERMANS, HANNAH L, et al. Using soil bacterial communities to predict physico-chemical variables and soil quality[J]. Microbiome, 2020, 8(1):79.
doi: 10.1186/s40168-020-00858-1 URL |
[24] |
KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1):75-86.
doi: 10.1007/BF02183056 URL |
[25] | Okazaki K T, Hirohito H, Megumi T, et al. Community Analysis-based Screening of Plant Growth-promoting Bacteria for Sugar Beet[J]. Microbes and environments, 2021, 36(2). |
[26] | 李艳春, 陈志鹏, 林伟伟, 等. 茶树连作障碍形成机制及调控措施研究进展[J]. 生态科学, 2019, 38(5):225-232. |
[27] | 刘来. 连作土壤酸化及改良对土壤性状和辣椒生理代谢的影响[D]. 南京:南京农业大学, 2013. |
[28] | Yasushi H, Munehiro N, Mitsuki T, et al. Analysis of Soil Fungal Community Structure on the Surface of Buried Polyethylene Terephthalate[J]. Journal of polymers and the environment, 2020:1-13. |
[29] | 袁龙刚, 张军林, 张朝阳, 等. 连作对辣椒根际土壤微生物区系影响的初步研究[J]. 陕西农业科学, 2006(2):49-50. |
[30] | 胡元森, 刘亚峰, 吴坤, 等. 黄瓜连作土壤微生物区系变化研究[J]. 土壤通报, 2006(1):126-129. |
[31] | 孙秀山, 封海胜, 万书波, 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J]. 作物学报, 2001(5):617-621. |
[32] | 林生, 庄家强, 陈婷, 等. 不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析[J]. 生态学杂志, 2013, 32(1):64-71. |
[33] |
HUANG W, SUN D, FU J, et al. Effects of Continuous Sugar Beet Cropping on Rhizospheric Microbial Communities[J]. Genes (Basel), 2019, 11(1):13.
doi: 10.3390/genes11010013 URL |
[34] |
JACQUELINE M, CHAPARRO. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and fertility of soils, 2012, 48(5):489-499.
doi: 10.1007/s00374-012-0691-4 URL |
[35] |
ETESAMI H, BEATTIE G A. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops[J]. Frontiers in microbiology, 2018, 9:148.
doi: 10.3389/fmicb.2018.00148 URL |
[36] |
SantOyo G, OROZCO-MOSQUEDA M, GOVINDAPPA M. Mechanisms of bio- control and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review[J]. Biocontrol science and technology, 2012, 22(8):855-872
doi: 10.1080/09583157.2012.694413 URL |
[37] | BUTTIMER C, MCAULIFFE O, ROSS R P, et al. Bacteriophages and Bacterial Plant Diseases[J]. Frontiers in microbiology, 2017, 8:34. |
[38] | COMPANT S, ClÉMent C, SESSITSCH A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization[J]. Soil biology and biochemistry, 2009, 42(5):669-678. |
[39] |
MARK G, MAXWELL D, HAZEL H, et al. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions[J]. Proceedings of the national academy of sciences, 2005: 102(48):17454-17459
doi: 10.1073/pnas.0506407102 URL |
[40] | MENDES R, KRUIJT M, BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.[J]. Science, 2011(6033):100-1097. |
[41] |
CHEN S, QI G, LUO T, et al. Continuous-cropping Tobacco Caused Variance of Chemical Properties and Structure of Bacterial Network in Soils[J]. Land degradation & development, 2018, 29(11):4106-4120.
doi: 10.1002/ldr.3167 URL |
[42] | MINGNA C, HU L, SHANLIN Y, et al. Long-term Continuously Monocropped Peanut Significantly Changed the Abundance and Composition of Soil Bacterial communities[J]. Peerj, 2020, 8. |
[43] | 张子龙, 王文全. 植物连作障碍的形成机制及其调控技术研究进展[J]. 生物学杂志, 2010, 27(5):69-72. |
[44] | 周煜杰, 贾夏, 赵永华, 等. 森林生态系统土壤真菌群落及其影响因素研究进展[J]. 生态环境学报, 2020, 29(8):1703-1712. |
[45] | CHAPELLE E, MENDES R, BAKKER P, et al. Fungal invasion of the rhizosphere microbiome[J]. The isme journal. 2015(1):8-265. |
[46] | 侯慧, 董坤, 杨智仙, 等. 连作障碍发生机理研究进展[J]. 土壤, 2016, 48(6):1068-1076. |
[47] | 顾松松, 熊兴耀, 谭琳, 等. 土壤微生态与马铃薯连作障碍机制的研究进展[J]. 中国农学通报, 2018, 34(30):42-45. |
[48] |
MAZZOLA M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in washington[J]. Phytopathology, 1998, 88(9):930-938.
doi: 10.1094/PHYTO.1998.88.9.930 URL |
[49] |
JUNJIE L, QIN Y, YANSHENG L, et al. Continuous cropping of soybean alters the bulk and rhizospheric soil fungal communities in a Mollisol of Northeast PR China[J]. Land degradation & development, 2019, 30(14):1725-1738.
doi: 10.1002/ldr.v30.14 URL |
[50] | 陈宏宇, 李晓鸣, 王敬国. 抗病性不同大豆品种根面及根际微生物区系的变化Ⅱ.连作大豆(重茬)根面及根际微生物区系的变化[J]. 植物营养与肥料学报, 2006(1):104-108. |
[51] | 魏丹丽. 三七根腐病绿色防治技术体系研发[D]. 昆明:云南农业大学, 2017. |
[52] |
SHI G, SUN H, CALDERón U, et al. Soil Fungal Diversity Loss and Appearance of Specific Fungal Pathogenic Communities Associated With the Consecutive Replant Problem (CRP) in Lily[J]. Frontiers in microbiology, 2020, 11:1649-1649.
doi: 10.3389/fmicb.2020.01649 URL |
[53] | DONALD S H D. The Sugar Beet Crop: Science into Practice[J]. The journal of agricultural science, 1994, 122(2):327-327. |
[54] | 滕应, 任文杰, 李振高, 等. 花生连作障碍发生机理研究进展[J]. 土壤, 2015, 47(2):259-265. |
[55] | BAKKER P, BERENDSEN R, DOORNBOS R, et al. The rhizosphere revisited: root microbiomics[J]. Front plant Sci, 2013: 165. |
[56] | 耿贵, 刘钰, 李任任, 等. 甜菜连作土壤对甜菜幼苗生长影响及其化感物质成分分析[J]. 中国农学通报, 2021, 37(1):15-20. |
[57] |
MARK M. Apple Replant Disease: Role of Microbial Ecology in Cause and Control[J]. Annual review of phytopathology, 2012, 50:45-65.
doi: 10.1146/phyto.2012.50.issue-1 URL |
[58] |
敖金成, 李博, 闫凯, 等. 连作对云南典型烟区植烟土壤细菌群落多样性的影响[J/OL]. 农业资源与环境学报:1-19[2022-01-04].DOI: 10.13254/j.jare.2020.0721.
doi: 10.13254/j.jare.2020.0721 |
[59] | APARICIO V, COSTA J. Soil Quality Indicators Under Continuous Cropping Systems in the Argentinean Pampas[J]. Soil & tillage research, 2007, 96(1):155-165. |
[60] |
YU Y, YANG J, ZENG S, et al. Soil Ph, Organic Matter, and Nutrient Content Change with the Continuous Cropping of Cunninghamia Lanceolata Plantations in South China[J]. Journal of soils and sediments, 2017, 17(9):2230-2238.
doi: 10.1007/s11368-016-1472-8 URL |
[61] |
GIL S V, MERILES J, CONFORTO C, et al. Response of Soil Microbial Communities to Different Management Practices in Surface Soils of a Soybean Agroecosystem in Argentina[J]. European journal of soil biology, 2010, 47(1):55-60.
doi: 10.1016/j.ejsobi.2010.11.006 URL |
[62] | CHEN P, WANG Y, LIU Q, et al. Phase Changes of Continuous Cropping Obstacles in Strawberry ( Fragaria × Ananassa Duch.) Production[J]. Applied soil ecology, 2020: 155. |
[63] | JASON A, PEIFFER A, OMRY K, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(16):6548-6553. |
[64] | MEENA R, VIJAYAKUMAR V, YADAV G, et al. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere[J]. Plant growth regulation, 2018, 84(2):207-223. |
[65] | BAIS H, WEIR T, PERRY L, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu rev plant Biol, 2006: 66-233. |
[66] | 董晓民, 高晓兰, 刘伟, 等. 桃连作障碍中自毒作用的研究进展[J]. 黑龙江农业科学, 2021, 320(2):123-127. |
[67] |
LIU Z, LIU J, YU Z, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition[J]. Soil and tillage research, 2020, 197(C):104503.
doi: 10.1016/j.still.2019.104503 URL |
[68] |
TAN Y, CUI Y, LI H, et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research, 2017, 194:10-19.
doi: 10.1016/j.micres.2016.09.009 URL |
[69] |
XIONG W, ZHAO Q, ZHAO J, et al. Different Continuous Cropping Spans Significantly Affect Microbial Community Membership and Structure in a Vanilla-Grown Soil as Revealed by Deep Pyrosequencing[J]. Microbial ecology, 2015, 70(1):209-218.
doi: 10.1007/s00248-014-0516-0 URL |
[70] |
ZENG J, LIU J, LU C, et al. Intercropping With Turmeric or Ginger Reduce the Continuous Cropping Obstacles That Affect Pogostemon cablin (Patchouli)[J]. Frontiers in microbiology, 2020, 11:579719-579719.
doi: 10.3389/fmicb.2020.579719 URL |
[71] | 谢奎忠, 邱慧珍, 胡新元, 等. 连作马铃薯根系分泌物鉴定及其对尖孢镰孢菌(Fusarium oxysporum)的作用[J]. 中国沙漠, 2021(3):1-9. |
[72] | WU L, CHEN J, WU H, et al. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing[J]. Scientific reports, 2016, 6(1):1693-1699. |
[73] |
Bai Y X, WANG G, CHENG Y D, et al. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids[J]. Scientific reports, 2019, 9(1):653-662.
doi: 10.1038/s41598-018-37441-6 URL |
[74] | MILLER H G, IKAWA M, PEIRCE L C. Caffeic acid identified as an inhibitory compound in asparagus root filtrate[J]. Horticultural science, 1991, 26(12):1525-1527. |
[75] | 沈谦, 王进军. 土壤连作障碍发生的原因及其调控研究进展[J]. 乡村科技, 2019, 217(13):111-113. |
[1] | WU Song, ZHOU Tian, YANG Libin, JIANG Yunbing, PAN Hong, LIU Yongzhi, DU Jun. VOSviewer-Based Visual Analysis on Research Status of Phyllosphere Microorganisms [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 142-150. |
[2] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[3] | CHEN Yinghua, BAI Ruxiao, WANG Juan, ZHANG Xinjiang, LIU Linghui, LIU Xiaolong, FENG Guorui, WEI Changzhou. Foliar Spraying Uniconazole and Boron: Effects on Yield and Sugar Content of Sugar Beet in Taer Basin [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 41-48. |
[4] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[5] | YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41. |
[6] | WANG Lina, YANG Ying, Du Su. Effects of Biochar Application on Saline-alkali Soil: Research Status [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 81-87. |
[7] | WANG Linyu, JIANG Yichen, YU Qingyang, WU Zedong, PI Zhi. Histone Deacetylases (HDACs) Gene Family in Sugar Beet: Identification and Functional Prediction [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 9-16. |
[8] | CAO Qiumei, WANG Luyi, LI Xiaoman, LI Junda, LIU Mengtian, ZHENG Yao, WANG Lihua. Effects of Effective Microorganisms on Growth Performance, Nutrient Digestibility and Fecal Ammonia Emission of BALB/C Mice [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 124-128. |
[9] | DENG Yushuai, WANG Yuguang, YU Lihua, GENG Gui. Effects of Waterlogging Stress on Growth and Photosynthetic Characteristics of Sugar Beet Seedlings Under Different Soil Salinity and Alkalinity [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 18-23. |
[10] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. |
[11] | LIU Na, HU Huabing, WANG Ronghua, LIU Xiaoyue, LIU Zhaoyang, LIU Xiaohan, WANG Maoqian. Methanol Aging Treatment: Effect on Germination of Sugar Beet Seeds [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 28-33. |
[12] | ZHAO Yaru, PI Zhi, LIU Rui, MA Yuyan, WU Zedong. Genetic Diversity Analysis of Monogerm Cytoplasmic Male Sterile Lines and Maintainer Lines of Sugar Beet [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 35-40. |
[13] | DONG Yinzhuang, WANG Gang, YU Lihua, GENG Gui. Effects of Ferrous Stress on Accumulation of Mineral Elements in Sugar Beet Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 11-16. |
[14] | LIU Shujuan, ZHANG Cuiping, LI Shuying, YANG Xiaoyan, ZHOU Yuanqing, LI Yuan. Phthalic Acid Esters Degradation by Rhizosphere Microorganisms of Herbaceous Plants in Surface Water Environment [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 44-51. |
[15] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||