Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (19): 99-108.doi: 10.11924/j.issn.1000-6850.casb2022-0181
Special Issue: 农业气象
Previous Articles Next Articles
WU Song1(), LIU Yongzhi2, YANG Libin3(
), JIANG Yunbing3, ZHOU Tian3
Received:
2022-03-17
Revised:
2022-06-03
Online:
2022-07-05
Published:
2022-07-13
Contact:
YANG Libin
E-mail:wusong0927@126.com;ylb1128@qq.com
CLC Number:
WU Song, LIU Yongzhi, YANG Libin, JIANG Yunbing, ZHOU Tian. Research Trend Analysis of Forest Greenhouse Gas Emissions[J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 99-108.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0181
序号 | 机构 | 作者 | |||
---|---|---|---|---|---|
名称 | 发文量/篇 | 姓名 | 发文量/篇 | ||
1 | 中国科学院(Chinese Academy of Sciences) | 78 | Peng Ch | 11 | |
2 | 中国科学院大学(University of Chinese Academy of Sciences) | 32 | Corre M D | 11 | |
3 | 赫尔辛基大学(University of Helsinki) | 23 | Veldkamp E | 11 | |
4 | 俄罗斯科学院(Russian Academy of Sciences) | 23 | Machacova K | 8 | |
5 | 兰斯卡特大学(University of Lancaster) | 18 | Sjogersten S | 8 | |
6 | 东芬兰大学(University of Eastern Finland) | 18 | Berninger F | 7 | |
7 | 瑞典农业科学大学(Swedish University of Agricultural Sciences) | 17 | Maher D T | 7 | |
8 | 中国林业科学研究院(Chinese Academy of Forestry) | 16 | Hirano T | 7 | |
9 | 圣保罗大学(Universidade de Sao Paulo) | 15 | Vargas R | 7 | |
10 | 北海道大学(Hokkaido University) | 15 | Minkkinen K | 6 |
序号 | 机构 | 作者 | |||
---|---|---|---|---|---|
名称 | 发文量/篇 | 姓名 | 发文量/篇 | ||
1 | 中国科学院(Chinese Academy of Sciences) | 78 | Peng Ch | 11 | |
2 | 中国科学院大学(University of Chinese Academy of Sciences) | 32 | Corre M D | 11 | |
3 | 赫尔辛基大学(University of Helsinki) | 23 | Veldkamp E | 11 | |
4 | 俄罗斯科学院(Russian Academy of Sciences) | 23 | Machacova K | 8 | |
5 | 兰斯卡特大学(University of Lancaster) | 18 | Sjogersten S | 8 | |
6 | 东芬兰大学(University of Eastern Finland) | 18 | Berninger F | 7 | |
7 | 瑞典农业科学大学(Swedish University of Agricultural Sciences) | 17 | Maher D T | 7 | |
8 | 中国林业科学研究院(Chinese Academy of Forestry) | 16 | Hirano T | 7 | |
9 | 圣保罗大学(Universidade de Sao Paulo) | 15 | Vargas R | 7 | |
10 | 北海道大学(Hokkaido University) | 15 | Minkkinen K | 6 |
序号 | 期刊 | 中科院分区 | 发文量/篇 |
---|---|---|---|
1 | 《Science of the Total Environment》 | 2 | 45 |
2 | 《Forests》 | 3 | 41 |
3 | 《Global Change Biology》 | 1 | 30 |
4 | 《Biogeosciences》 | 2 | 25 |
5 | 《Journal of Geophysical Research-Biogeosciences》 | 3 | 20 |
6 | 《Agricultural and Forest Meteorology》 | 1 | 19 |
7 | 《Biogeochemistry》 | 2 | 16 |
8 | 《Scientific Reports》 | 3 | 15 |
9 | 《Forest Ecology and Management》 | 2 | 15 |
10 | 《Soil Biology & Biochemistry》 | 1 | 14 |
10 | 《Ecosystems》 | 2 | 14 |
序号 | 期刊 | 中科院分区 | 发文量/篇 |
---|---|---|---|
1 | 《Science of the Total Environment》 | 2 | 45 |
2 | 《Forests》 | 3 | 41 |
3 | 《Global Change Biology》 | 1 | 30 |
4 | 《Biogeosciences》 | 2 | 25 |
5 | 《Journal of Geophysical Research-Biogeosciences》 | 3 | 20 |
6 | 《Agricultural and Forest Meteorology》 | 1 | 19 |
7 | 《Biogeochemistry》 | 2 | 16 |
8 | 《Scientific Reports》 | 3 | 15 |
9 | 《Forest Ecology and Management》 | 2 | 15 |
10 | 《Soil Biology & Biochemistry》 | 1 | 14 |
10 | 《Ecosystems》 | 2 | 14 |
关键词 | 频次 | 中心度 | 关键词 | 频次 | 中心度 |
---|---|---|---|---|---|
二氧化碳(carbon dioxide) | 219 | 0.19 | 通量(fluxe) | 112 | 0.05 |
甲烷(methane) | 159 | 0.09 | 气候改变(climate change) | 112 | 0.03 |
氧化亚氮(nitrous oxide) | 155 | 0.19 | 呼吸(respiration) | 103 | 0.21 |
排放(emission) | 125 | 0.05 | 温室气体排放(greenhouse gas emission) | 103 | 0.05 |
森林(forest) | 114 | 0.18 | 氧化亚氮排放(nitrous oxide emission) | 100 | 0.20 |
关键词 | 频次 | 中心度 | 关键词 | 频次 | 中心度 |
---|---|---|---|---|---|
二氧化碳(carbon dioxide) | 219 | 0.19 | 通量(fluxe) | 112 | 0.05 |
甲烷(methane) | 159 | 0.09 | 气候改变(climate change) | 112 | 0.03 |
氧化亚氮(nitrous oxide) | 155 | 0.19 | 呼吸(respiration) | 103 | 0.21 |
排放(emission) | 125 | 0.05 | 温室气体排放(greenhouse gas emission) | 103 | 0.05 |
森林(forest) | 114 | 0.18 | 氧化亚氮排放(nitrous oxide emission) | 100 | 0.20 |
聚类编号 | 同质性 | 平均年份 | 研究主题 |
---|---|---|---|
#0 | 0.710 | 2018 | 土壤呼吸(soil respiration)、二氧化碳通量(carbon dioxide fluxe)、有机质(Organic matter)、降解(Decomposition)、甲烷通量(methane fluxe) |
#1 | 0.752 | 2018 | 模型(model)、缓解(mitigation)、温室气体通量(greenhouse gas fluxe)、伐木制品(harvested wood products)、北方森林(boreal forest) |
#2 | 0.903 | 2017 | 氧化亚氮(nitrous oxide)、甲烷(methane)、二氧化碳(carbon dioxide)、反硝化作用(denitrification)、温室气体(greenhouse gas) |
#3 | 0.71 | 2017 | 热带森林(tropical forest)、气候(climate)、碳储量(carbon storage)、储存量(storage)、生物量(biomas) |
#4 | 0.772 | 2018 | 森林砍伐(deforestation)、碳固存(carbon sequestration)、森林(forest)、降解(degradation)、土地利用(land-use) |
#5 | 0.851 | 2018 | 碳(carbon)、通量(fluxe)、土壤含水量(soil water content)、草地(grassland)、碳固存(carbon sequestration) |
聚类编号 | 同质性 | 平均年份 | 研究主题 |
---|---|---|---|
#0 | 0.710 | 2018 | 土壤呼吸(soil respiration)、二氧化碳通量(carbon dioxide fluxe)、有机质(Organic matter)、降解(Decomposition)、甲烷通量(methane fluxe) |
#1 | 0.752 | 2018 | 模型(model)、缓解(mitigation)、温室气体通量(greenhouse gas fluxe)、伐木制品(harvested wood products)、北方森林(boreal forest) |
#2 | 0.903 | 2017 | 氧化亚氮(nitrous oxide)、甲烷(methane)、二氧化碳(carbon dioxide)、反硝化作用(denitrification)、温室气体(greenhouse gas) |
#3 | 0.71 | 2017 | 热带森林(tropical forest)、气候(climate)、碳储量(carbon storage)、储存量(storage)、生物量(biomas) |
#4 | 0.772 | 2018 | 森林砍伐(deforestation)、碳固存(carbon sequestration)、森林(forest)、降解(degradation)、土地利用(land-use) |
#5 | 0.851 | 2018 | 碳(carbon)、通量(fluxe)、土壤含水量(soil water content)、草地(grassland)、碳固存(carbon sequestration) |
[1] |
JOHN B, SONALDE D, DENNIS H, et al. Intergovernmental Panel on Climate Change Special Report on Global Warming of 1.5℃ Switzerland : IPCC, 2018[J]. Population and development review, 2019, 45(1):251-252.
doi: 10.1111/padr.12234 URL |
[2] |
MILLER A D, DIETZE M C, DELUCIA E H, et al. Alteration of forest succession and carbon cycling under elevated CO2[J]. Global change biology, 2016, 22(1):351-363.
doi: 10.1111/gcb.13077 URL |
[3] |
CREIGHTON M L, JAMES W R, MICHAEL G R. Carbon allocation in forest ecosystems[J]. Global change biology, 2007, 13(10):2089-2109.
doi: 10.1111/j.1365-2486.2007.01420.x URL |
[4] | EGLE K, KAJAR K, FRANK B, et al. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada[J]. Science of the total environment, 2017, 601:895-905. |
[5] |
BENJAMIN W S, THOMAS E K, STEPHEN C H, et al. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA[J]. Biogeochemistry, 2011, 104(1/3):251-265.
doi: 10.1007/s10533-010-9499-1 URL |
[6] |
YONGWON K, NORIYUKI T. Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska[J]. Journal of geophysical research: Atmospheres, 2003, 108(D1):8154.
doi: 10.1029/2001JD000663 URL |
[7] | MATHEUS F S. The role of forests and protected areas in climate change mitigation: a review and critique of the ecosystem services and REDD+ approaches[J]. Desenvolvimento e meio ambiente, 2018, 46:23-36. |
[8] |
COBLE K H, MISHRA A K, FERRELL S, et al. Big data in agriculture: A challenge for the future[J]. Applied economic perspectives and policy, 2018, 40(1):79-96.
doi: 10.1093/aepp/ppx056 URL |
[9] | 丁恩俊, 谢佳, 申丽娟, 等. 基于文献计量的国内外农业信息化研究态势分析[J]. 西南大学学报:自然科学版, 2017, 39(8):116-125. |
[10] | 覃诚, 方向明, 陈典. 中国农村产业融合发展研究现状与展望——基于CiteSpace文献计量分析[J]. 中国农业大学学报, 2021, 26(10):198-208. |
[11] | 牛善栋, 吕晓. 基于文献计量的中国耕地保护补偿研究进展分析[J]. 土壤, 2018, 50(1):195-201. |
[12] |
SCHULTEUEBBING L F, ROS G H, de VRIES W. Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration[J]. Global change biology, 2021, 28(3):899-917.
doi: 10.1111/gcb.15960 URL |
[13] |
RYHTI K, KULMALA L, PUMPANEN J, et al. Partitioning of forest floor CO2 emissions reveals the belowground interactions between different plant groups in a Scots pine stand in southern Finland[J]. Agricultural and forest meteorology, 2021, 297:108266.
doi: 10.1016/j.agrformet.2020.108266 URL |
[14] |
KYASCHENKO J, OVANSKAINEN O, EKBLAD A, et al. Soil fertility in boreal forest relates to root-driven nitrogen retention and carbon sequestration in the mor layer[J]. The new phytologist, 2019, 221(3):1492-1502.
doi: 10.1111/nph.15454 URL |
[15] |
SOKOL N W, BRADFORD M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature geoscience, 2019, 12(1):46-53.
doi: 10.1038/s41561-018-0258-6 URL |
[16] |
YANG L, ASHLEY N C, AMRITA B, et al. Differential effects of redox conditions on the decomposition of litter and soil organic matter[J]. Biogeochemistry, 2021, 154(1):1-15.
doi: 10.1007/s10533-021-00790-y URL |
[17] |
RODTASSANA C, UNAWONG W, YAEMPHUM S, et al. Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest[J]. Ecology and evolution, 2021, 11(21):15430-15443.
doi: 10.1002/ece3.8248 URL |
[18] |
JIANG Z, BIAN H, XU L, et al. Effects of pulse precipitation on soil organic matter mineralization in forests: spatial variation and controlling factors[J]. Journal of plant ecology, 2021, 14(5):970-980.
doi: 10.1093/jpe/rtab057 URL |
[19] | VERCHOT L V, DANNENMANN M, KENGDO S K, et al. Land-use change and biogeochemical controls of soil CO2, N2O and CH4 fluxes in Cameroonian forest landscapes[J]. Journal of integrative environmental sciences, 2020, 17(3):45-67. |
[20] |
NNNES L J R, MEIRELES C I R, GOMES C J P, et al. Forest contribution to climate change mitigation: Management oriented to carbon capture and storage[J]. Climate, 2020, 8(2):21.
doi: 10.3390/cli8020021 URL |
[21] |
GUSTAVSSON L, HAUS S, LUNDBLAD M, et al. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels[J]. Renewable and sustainable energy reviews, 2017, 67:612-624.
doi: 10.1016/j.rser.2016.09.056 URL |
[22] |
COOMES D, ALLEN R, SCOTT N, et al. Designing systems to monitor carbon stocks in forests and shrublands[J]. Forest ecology and management, 2002, 164(1/3):89-108.
doi: 10.1016/S0378-1127(01)00592-8 URL |
[23] |
Li M, Cui Y, Fu Y, et al. Simulating the potential sequestration of three major greenhouse gases in China's natural ecosystems[J]. Forests, 2020, 11(2):128.
doi: 10.3390/f11020128 URL |
[24] |
CADE S M, CLEMITSHAW K C, MOLINAHERRERA S, et al. Evaluation of LandscapeDNDC model predictions of CO2 and N2O fluxes from an oak forest in SE England[J]. Forests, 2021, 12(11):1517.
doi: 10.3390/f12111517 URL |
[25] |
SILJANDER R, EKHOLM T. Integrated scenario modelling of energy, greenhouse gas emissions and forestry[J]. Mitigation and adaptation strategies for global change, 2018, 23(5):783-802.
doi: 10.1007/s11027-017-9759-7 URL |
[26] |
SILJANEN H M P, WELTI N, VOIGT C, et al. Atmospheric impact of nitrous oxide uptake by boreal forest soils can be comparable to that of methane uptake[J]. Plant and soil, 2020, 454(1/2):121-138.
doi: 10.1007/s11104-020-04638-6 URL |
[27] | SONG X, PENG C, CIAIS P, et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest[J]. Science advances, 2020, 6(12):w5790. |
[28] |
SONG L, TIAN P, ZHANG J, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Science of the total environment, 2017, 609:1303-1311.
doi: 10.1016/j.scitotenv.2017.08.017 URL |
[29] |
LI Y, HU S, CHEN J, et al. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review[J]. Journal of soils and sediments, 2018, 18(2):546-563.
doi: 10.1007/s11368-017-1906-y URL |
[30] |
POKHAREL P, KWAK J H, YONG S O, et al. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment[J]. Science of the total environment, 2018, 625:1247-1256.
doi: 10.1016/j.scitotenv.2017.12.343 URL |
[31] |
AYAYEE P A, TAURA J, ROBERTO A A, et al. Patterns of denitrification and methanogenesis rates from vernal pools in a temperate forest driven by seasonal, microbial functional gene abundances, and soil chemistry[J]. Wetlands, 2020, 40(4):721-731.
doi: 10.1007/s13157-019-01225-z URL |
[32] |
GRUENING M M, GERMESHAUSEN F, THIES C, et al. Increased forest soil CO2 and N2O emissions during insect infestation[J]. Forests, 2018, 9(10):612.
doi: 10.3390/f9100612 URL |
[33] |
SA M F, SCHAEFER C E G R, LOUREIRO D C, et al. Fluxes of CO2, CH4, and N2O in tundra-covered and Nothofagus forest soils in the Argentinian Patagonia[J]. Science of the total environment, 2019, 659:401-409.
doi: 10.1016/j.scitotenv.2018.12.328 URL |
[34] |
WU X, ZANG S, MA D, et al. Emissions of CO2, CH4, and N2O fluxes from forest soil in permafrost region of Daxing'an Mountains, Northeast China[J]. International journal of environmental research and public health, 2019, 16(16):2999.
doi: 10.3390/ijerph16162999 URL |
[35] | MANNAN A, FENG Z, AHAMAD A, et al. CO2 emission trends and risk zone mapping of forest fires in subtropical and moist temperate forests of Pakistan[J]. Global warming focus, 2019, 17(2):2983-3002. |
[36] |
MCROBERTS R E, NAESSET E, SANNIER C, et al. Remote sensing support for the gain-loss approach for greenhouse gas inventories[J]. Remote sensing, 2020, 12(11):1891.
doi: 10.3390/rs12111891 URL |
[37] |
NOOJIPADY P, MORTON D C, MACEDO M N, et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome[J]. Environmental research letters, 2017, 12(2):25004.
doi: 10.1088/1748-9326/aa5986 URL |
[38] | ASNER G P, POWELL G V N, MASCARO J, et al. High-resolution forest carbon stocks and emissions in the Amazon[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107(38):16738-16742. |
[39] |
BOGAERTS M, CIRHIGIRI L, ROBINSON I, et al. Climate change mitigation through intensified pasture management: Estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon[J]. Journal of cleaner production, 2017, 162:1539-1550.
doi: 10.1016/j.jclepro.2017.06.130 URL |
[40] |
BERNARDINO A F, NÓBREGA G N, FERREIRA T O. Consequences of terminating mangrove’s protection in Brazil[J]. Marine policy, 2021, 125:104389.
doi: 10.1016/j.marpol.2020.104389 URL |
[41] |
SASMITO S D, TAILLARDAT P, CKENDENNING J N, et al. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review[J]. Global change biology, 2019, 25(12):4291-4302.
doi: 10.1111/gcb.14774 URL |
[42] |
HAN M, ZHU B. Changes in soil greenhouse gas fluxes by land use change from primary forest[J]. Global change biology, 2020, 26(4):2656-2667.
doi: 10.1111/gcb.14993 URL |
[43] |
LIU M, LIU M, LI P, et al. Variations in soil organic carbon decompositions of different land use patterns on the tableland of Loess Plateau[J]. Environmental science and pollution research, 2020, 27(4):4337-4352.
doi: 10.1007/s11356-019-07099-2 URL |
[44] |
ZHOU M, WANG X, REN X, et al. Afforestation and deforestation enhanced soil CH4 uptake in a subtropical agricultural landscape: Evidence from multi-year and multi-site field experiments[J]. Science of the total environment, 2019, 662:313-323.
doi: 10.1016/j.scitotenv.2019.01.247 URL |
[45] |
RICHARDS M, POGSON M, DONDINI M, et al. High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom[J]. GCB bioenergy, 2017, 9(3):627-644.
doi: 10.1111/gcbb.12360 URL |
[46] |
XIE Y, HOU Z, LIU H, et al. The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water-Energy-Food (WEF) framework towards China’s carbon neutrality by 2060[J]. Environmental earth sciences, 2021, 80(14):468.
doi: 10.1007/s12665-021-09762-9 URL |
[1] | CHEN Hemin, XIAO Wenfang, CHEN Heming, LV Fubing, ZHU Genfa, LI Zongyan, LI Zuo. Research Progress and Visual Analysis of Orchid Fresh-keeping Based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 151-164. |
[2] | WU Song, ZHOU Tian, YANG Libin, JIANG Yunbing, PAN Hong, LIU Yongzhi, DU Jun. VOSviewer-Based Visual Analysis on Research Status of Phyllosphere Microorganisms [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 142-150. |
[3] | WANG Feng, SHI Hongqing, JIANG Qiumin. Policy Discussion on Consolidating and Expanding the Effect of Poverty Alleviation by Economic Forest Industry [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 147-151. |
[4] | ZHAO Shuangmei, LIU Xianbin, LI Hongmei, DONG Wencai, SHEN Jianping, BAO Jinmei, LIANG Fang, LU Mei. Distributional Characteristics of Soil Carbon in Moist Evergreen Broad-leaved Forest in Ailao Mountains of Yunnan Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 88-95. |
[5] | WANG Aijiao, YE Chunlei, NIU Weimin, CHE Fazhan. Bibliometric Analysis of Giant Knotweed Research at Home and Abroad from 2002 to 2022 [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 134-140. |
[6] | LIU Haiying, WANG Zeng, XU Yaowen, GE Xiaogai, ZHOU Benzhi, JIANG Zhonglong. Characteristics of Carbon Storage in Phyllostulis pubescens Ecosystem with Different Stand Densities [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 17-21. |
[7] | WANG Yan, XU Meimei, SHAN Lianhui, GOU Huan, TONG Yujia, AN Xinying. Current Status of Research on Major Plant Epidemic Based on Bibliometrics and Patentometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 144-154. |
[8] | SUN Mingyang, XU Shiqiang, ZHANG Wenting, GU Yan, MEI Yu, LI Jingyu, ZHOU Fang, WANG Jihua. Advances in Scientific Research on Andrographis paniculata [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 155-164. |
[9] | ZHOU Tingyu, XIAO Yang, HUANG Qingyang, XIE Chen, LUO You. Forest Litter Decomposition: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 44-51. |
[10] | CHENG Lu, WEN Yongli, CHENG Man. Effects of Enhanced UV-B Radiation on Greenhouse Gas Emissions in Terrestrial Ecosystem: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 80-88. |
[11] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[12] | SHA Gang, YIN Hongbin, CAO Hongjie, XIE Lihong, HUANG Qingyang, XU Mingyi. Methane Oxidation Flux in Volcanic Forest Soil of Different Geological Ages and Its Influencing Factors [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 83-92. |
[13] | CHEN Bin. Automatic Extraction of Individual Tree in Forest Land Based on UAV Remote Sensing Images: Taking Danxia Mountain Wetland Reserve as an Example [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 152-158. |
[14] | DIAO Yunfei, ZHANG Su, CONG Xidong, DU Qian, WANG Qiyao, LIU Xue. Characteristics of Soil Nitrogen Components of Original Tilia Pinus Koraiensis Forest and Secondary Poplar-Birch Forest in Lesser Khingan Mountains [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 69-75. |
[15] | MA Lei, HUANG Xiaojun, GANBAT Dashzebegd, MUNGUNKHUYAG Ariunaad, TSAGAANTSOOJ Nanzadd, ALTANCHIMEG Dorjsuren, BAO Gang, TONG Siqin, BAO Yuhai, ENKHNASAN Davaadorj. Monitoring Forest Insect Pests by Different Remote Sensing Sensors: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 91-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||