Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (21): 104-112.doi: 10.11924/j.issn.1000-6850.casb20190500171
Special Issue: 生物技术
Previous Articles Next Articles
Yang Zhiyu1,2, Tong Tianqi1,2, Liu Lei1,2, Ping Wenxiang1,2, Ge Jingping1,2()
Received:
2019-05-21
Revised:
2019-06-30
Online:
2020-07-25
Published:
2020-07-21
Contact:
Ge Jingping
E-mail:gejingping@126.com
CLC Number:
Yang Zhiyu, Tong Tianqi, Liu Lei, Ping Wenxiang, Ge Jingping. Acetic Acid Addition: Effects on the Production of 2,3-butanediol by Saccharomyces cerevisiae[J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 104-112.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190500171
引物名称 | 引物序列(5’-3’) |
---|---|
18S-up | TCACC AGGTC CAGAC ACAAT |
18S-down | AGCAG ACAAA TCACT CCACC |
qilv2-up | CGTCCAATTCCTCTTGCTTC |
qilv2-down | ATGGCAATCCCTGTTCTACG |
qbdh1-up | TTTGCTGAACAAGTCGTAGTC |
qbdh1-down | CCCAGTTTCTTGGCCATTTC |
引物名称 | 引物序列(5’-3’) |
---|---|
18S-up | TCACC AGGTC CAGAC ACAAT |
18S-down | AGCAG ACAAA TCACT CCACC |
qilv2-up | CGTCCAATTCCTCTTGCTTC |
qilv2-down | ATGGCAATCCCTGTTCTACG |
qbdh1-up | TTTGCTGAACAAGTCGTAGTC |
qbdh1-down | CCCAGTTTCTTGGCCATTTC |
时间 | 组别 | CT值 | △CT | △△CT | 2-△△CT | |
---|---|---|---|---|---|---|
CT-ilv2 | CT-18S | |||||
24 h | 添加S. cerevisiae W141上清液(对照) | 23.99±0.32 | 20.13±0.11 | 3.77 | 0 | 1 |
添加S. cerevisiae W141-07上清液 | 23.76±0.22 | 19.59±0.16 | 4.17 | 0.40 | 0.76 | |
添加1.5 g/L乙酸 | 23.01±0.16 | 18.97±0.45 | 4.04 | -2.13 | 4.38 |
时间 | 组别 | CT值 | △CT | △△CT | 2-△△CT | |
---|---|---|---|---|---|---|
CT-ilv2 | CT-18S | |||||
24 h | 添加S. cerevisiae W141上清液(对照) | 23.99±0.32 | 20.13±0.11 | 3.77 | 0 | 1 |
添加S. cerevisiae W141-07上清液 | 23.76±0.22 | 19.59±0.16 | 4.17 | 0.40 | 0.76 | |
添加1.5 g/L乙酸 | 23.01±0.16 | 18.97±0.45 | 4.04 | -2.13 | 4.38 |
时间 | 组别 | CT值 | △CT | △△CT | 2-△△CT | |
---|---|---|---|---|---|---|
CT- bdh1 | CT-18S | |||||
60 h | 添加S. cerevisiae W141上清液(对照) | 24.57±0.21 | 19.03±0.31 | 5.54 | 0 | 1 |
添加S. cerevisiae W141-07上清液 | 24.94±0.32 | 19.07±0.16 | 5.87 | 0.33 | 0.80 | |
添加1.5 g/L乙酸 | 23.82±0.25 | 19.33±0.41 | 4.49 | -0.31 | 1.24 |
时间 | 组别 | CT值 | △CT | △△CT | 2-△△CT | |
---|---|---|---|---|---|---|
CT- bdh1 | CT-18S | |||||
60 h | 添加S. cerevisiae W141上清液(对照) | 24.57±0.21 | 19.03±0.31 | 5.54 | 0 | 1 |
添加S. cerevisiae W141-07上清液 | 24.94±0.32 | 19.07±0.16 | 5.87 | 0.33 | 0.80 | |
添加1.5 g/L乙酸 | 23.82±0.25 | 19.33±0.41 | 4.49 | -0.31 | 1.24 |
[1] |
Tong Y J, Ji X J, Shen M Q, et al. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production[J]. Applied Microbiology & Biotechnology, 2016,100(2):637-647.
doi: 10.1007/s00253-015-7013-3 URL pmid: 26428232 |
[2] |
Ji X J, Huang H, Ouyang P K. Microbial 2,3-butanediol production: a state-of-the-art review[J]. Biotechnology Advances, 2011,29(3):351-364.
doi: 10.1016/j.biotechadv.2011.01.007 URL pmid: 21272631 |
[3] | 纪晓俊, 聂志奎, 黎志勇, 等. 生物制造2,3-丁二醇:回顾与展望[J]. 化学进展, 2010,22(12):2450-2461. |
[4] |
沈梦秋, 纪晓俊, 聂志奎, 等. 生物制造不同立体构型2, 3-丁二醇:合成机理与实现方法[J]. 催化学报, 2013,34(2):351-360.
doi: 10.3724/SP.J.1088.2013.20737 URL |
[5] |
Ma C, Wang A, Qin J, et al. Enhanced 2, 3-butanediol production by Klebsiella pneumoniae SDM[J]. Appl. Microbiol. Biotechnol., 2009,82(1):49-57.
doi: 10.1007/s00253-008-1732-7 URL pmid: 18949476 |
[6] |
Cho S, Kim T, Woo H M, et al. Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase[J]. Plos One, 2015,10(9):e0138109.
doi: 10.1371/journal.pone.0138109 URL pmid: 26368397 |
[7] | Zhang L, Sun J, Hao Y, et al. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30[J]. J.Ind.Microbiol. Biotechnol., 2010,37(8):857-62. |
[8] |
Lian J, Chao R, Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol[J]. Metab. Eng., 2014,23:92-99.
URL pmid: 24525332 |
[9] | 黄守锋, 裴芳艺, 王长丽, 等. 利用酿酒酵母工程菌株生产2,3-丁二醇的研究进展[J]. 食品安全质量检测学报, 2015,6(10):3928-3934. |
[10] |
Kim S J, Seo S O, Jin Y S, et al. Production of 2, 3-butanediol by engineered Saccharomyces cerevisiae[J]. Bioresource Technology, 2013,146:274-281.
doi: 10.1016/j.biortech.2013.07.081 URL pmid: 23941711 |
[11] |
Guo X W, Ya Z W, Jian G, et al. Efficient production of 2,3-butanediol from cheese whey powder (CWP) solution by Klebsiella pneumoniae through integrating pulsed fed-batch fermentation with a two-stage pH control strategy[J]. Fuel, 2017,203:469-477.
doi: 10.1016/j.fuel.2017.04.138 URL |
[12] |
Priya A, Prem D, Pooja T, et al. Microbial production of 2,3-butanediol through a two-stage pH and agitation strategy in 150l bioreactor[J]. Biochemical Engineering Journal, 2016,105:159-167.
doi: 10.1016/j.bej.2015.09.016 URL |
[13] |
Kim S J, Ji S H. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing[J]. Metabolic Engineering, 2015,31(5):94-101.
doi: 10.1016/j.ymben.2015.07.006 URL |
[14] |
Choi M H, Soo J K, Jin W K, et al. Molecular cloning and expression of Enterobacter aerogenes α-acetolactate decarboxylase in pyruvate decarboxylase-deficient Saccharomyces cerevisiae for efficient 2,3-butanediol production[J]. Process Biochemistry, 2016,51(2):170-176.
doi: 10.1016/j.procbio.2015.11.023 URL |
[15] |
Bryn1 K, Jan C U, Fredrik C S. Effect of Acetate upon the Formation of Acetoin in Klebsiella and Enterobacter and its Possible Practical Application in a Rapid Voges-Proskauer Test[J]. Applied microbiology, 1973,25(3):511-512.
URL pmid: 4572901 |
[16] |
Lee S J, Laxmi P T, Ju H L, et al. Stimulation of 2,3-butanediol production by upregulation of alsR gene transcription level with acetate addition in Enterobacter aerogenes ATCC 29007[J]. Process Biochemistry, 2016,51(12):1904-1910.
doi: 10.1016/j.procbio.2016.09.008 URL |
[17] | Yu E K C, John N Saddler. Enhanced Production of 2,3-Butanediol by Klebsiella pneumoniae Grown on High Sugar Concentrations in the Presence of Acetic Acid[J]. Applied and Environmential Microbiology, 1982,18(6):777-784. |
[18] | 郭欣坤, 方慧英, 诸葛斌, 等. 2,3-丁二醇代谢途径关键酶基因敲除对克雷伯氏菌发酵产1,3-丙二醇的影响[J]. 生物工程学报, 2013,29(9):1290-1300. |
[19] | 张奇, 邹昆, 徐旭, 等. 替考拉宁发酵液中乙酰乳酸合成酶活性的测定方法[J]. 中国抗生素杂志, 2010,35(6):447-456. |
[20] | 金美娟, 吴坚平, 徐刚, 等. 乙酰乳酸合成酶基因的克隆与高效表达[J]. 微生物学通报, 2012,39(11):1589-1596. |
[21] |
童颖佳, 邬文嘉, 彭辉, 等. 微生物合成2,3-丁二醇的代谢工程[J]. 化工学报, 2016,67(7):2656-2671.
doi: 10.11949/j.issn.0438-1157.20160209 URL |
[22] |
Wei Y H, Li F T, Chang J S. The influences of pH control strategies on the distribution of 1,3-propanediols and 2,3-butanediols production by an isolated indigenous Klebsiella sp. Ana-WS5[J]. Bioresource Technology, 2014,159(6):292-296.
doi: 10.1016/j.biortech.2014.02.115 URL |
[23] |
Lee S J, Laxmi P T, Ju H L, et al. Stimulation of 2,3-butanediol production by upregulation of alsR gene transcription level with acetate addition in Enterobacter aerogenes ATCC 29007[J]. Process Biochemistry, 2016,51(12):1904-1910.
doi: 10.1016/j.procbio.2016.09.008 URL |
[24] | 吴晶, 程可可, 李文英, 等. 乙酸、糠醛和5-羟甲基糠醛对产酸克雷伯氏菌发酵生产2,3-丁二醇的影响[J]. 生物工程学报, 2013,29(3):350-357. |
[25] |
Xiao X W, Hu H Y, Liu D H, et al. The implementation of high fermentative 2,3-butanediol production from xylose by simultaneous additions of yeast extract, Na2EDTA, and acetic acid[J]. New Biotechnology, 2016,33(1):16-22.
doi: 10.1016/j.nbt.2015.07.004 URL pmid: 26248275 |
[26] | Zeng A P, Hanno B, Wolf D D. Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture[J]. Applied and Microbiology biotechnology, 1990,33:485-489. |
[27] |
Jun L S, Choi H S, Kim C K, et al. Process strategy for 2,3-butanediol production in fed-batch culture by acetate addition[J]. Journal of Industrial and Engineering Chemistry, 2017,56:157-162.
doi: 10.1016/j.jiec.2017.07.008 URL |
[28] | Jin Z, Yi H L, Mindy L, et al. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial Interactions, 2016,35(2):81-105. |
[29] |
Celinska E, Grajek W. Biotechnological production of 2,3-butanediol-current state and prospects[J]. Biotechnology Advanced, 2009,27(6):715-725.
doi: 10.1016/j.biotechadv.2009.05.002 URL |
[30] |
Ko J K, Um Y, Lee S M. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress[J]. Bioresource Technology, 2016,222:422-430.
doi: 10.1016/j.biortech.2016.09.130 URL pmid: 27744166 |
[1] | Wang Changli, Liao Wei, Ye Guangbin, Ge Jingping, Liu Lei, Ma Yujian, Huang Xia, Bin Xiaoyun. Pyruvate Decarboxylase (Pdc6) Gene Cloning and Bioinformatics Analysis in Saccharomyces cerevisiae [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 103-108. |
[2] | Zhang Chi, Lv Yuze, Deng Liting, Sun Jian, Ge Jingping. Effects on 2,3-butanediol Produced by Saccharomyces cerevisiae and Its Strains: Acetoin Addition [J]. Chinese Agricultural Science Bulletin, 2021, 37(2): 20-27. |
[3] | Liu Lei, Li Na, Jiang Xueyong, Sun Jian, Lv Yuze, Ge Jingping. Effects on 2,3-butanediol Production of Saccharomyces cerevisiae: gpd2 Gene Knockout by CRISPR/Cas9 Technology [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 69-77. |
[4] | Ding Hao, Liu Wenjuan, Sun Jian, Liu Lei, Ping Wenxiang, Ge Jingping. Potential Saccharomyces cerevisiae Strains of Producing 2,3-butanediol: Screening [J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 107-115. |
[5] | Kang Jie, Wang Changli, Ge Jingping. Pyruvate Decarboxylase Gene (pdc1) of Haploid Saccharomyces Cerevisiae: Knockout and Identification [J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 91-98. |
[6] | Yang Zhiyu, Tong Tianqi, Liu Lei, Ping Wenxiang, Ge Jingping. Effects of Acetoin Addition on 2,3-butanediol Production by Saccharomyces cerevisiae W5/W141 [J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 19-25. |
[7] | Zheng Wenyong, Yang Tao, Li Shuangquan, Lv Changxu, Shi Min, Ma Libao, Yan Xianghua. Novel Saccharomyces cerevisiae Culture: Effects on Performance, Muscle Quality and Intestinal Microorganisms of Fattening Pig [J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 145-154. |
[8] | . Fermentation Characteristics of Saccharomyces cerevisiae WBG3 [J]. Chinese Agricultural Science Bulletin, 2018, 34(32): 49-56. |
[9] | . Detoxification Effect on Acidolysis Solution of Spent Mushroom Substrate [J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 134-140. |
[10] |
Zhu Min,Deng Suisheng,He Shuqiang,He Junhu,Chen Huarui and Chen Yeyuan.
Effects of NAA and Atonik on Yield and Fruit Quality of Hainan Mangifera indica ‘Guifei’ [J]. Chinese Agricultural Science Bulletin, 2015, 31(1): 116-121. |
[11] | . Research Advances in Indole-3-acetic Acid Biosynthesis and IAA Conjugate Hydrolysis [J]. Chinese Agricultural Science Bulletin, 2014, 30(6): 254-259. |
[12] | . The Role of Acetylcholine and Indole Acetic Acid in Cutting of Tamarix chinensis Lour. [J]. Chinese Agricultural Science Bulletin, 2011, 27(4): 26-29. |
[13] | . Research on Fermentation Technology of Hami Melon Vinegar [J]. Chinese Agricultural Science Bulletin, 2010, 26(20): 86-89. |
[14] | Ye Meirong, Zhu Changhua, Gan Lijun, Xia Kai. Hormonal Interactions in the Control of Plant Stem Elongation [J]. Chinese Agricultural Science Bulletin, 2007, 23(4): 228-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||