Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (3): 90-97.doi: 10.11924/j.issn.1000-6850.2020-00015
Previous Articles Next Articles
Xie Yun(), Guo Fangyun, Cao Bing(
)
Received:
2020-04-07
Revised:
2020-06-08
Online:
2021-01-25
Published:
2021-01-26
Contact:
Cao Bing
E-mail:877522958@qq.com;bingcao2006@126.com
CLC Number:
Xie Yun, Guo Fangyun, Cao Bing. Elevated CO2 Concentrations: Effects on Soil Microbial Quantity and Enzyme Activity in Root Zone of Lycium barbarum[J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 90-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.2020-00015
微生物 | 通径指标 | 过氧化氢酶 | 脲酶 | 转化酶 | 多酚氧化酶 |
---|---|---|---|---|---|
真菌 | 过氧化氢酶 | 0.0240 | 0.0068 | 0.0114 | -0.0150 |
脲酶 | -0.1992 | -0.6990 | -0.3313 | 0.4362 | |
转化酶 | -0.0120 | -0.0199 | -0.0420 | 0.0262 | |
多酚氧化酶 | 0.0764 | 0.1270 | -0.1672 | 0.2680 | |
细菌 | 过氧化氢酶 | 0.3710 | 0.1057 | 0.1759 | -0.2315 |
脲酶 | -0.1052 | -0.3690 | -0.1749 | 0.2303 | |
转化酶 | 0.1012 | 0.1683 | 0.3550 | -0.2215 | |
多酚氧化酶 | -0.0670 | -0.1114 | 0.1466 | -0.2350 | |
放线菌 | 过氧化氢酶 | 0.4180 | 0.1191 | 0.1981 | -0.2608 |
脲酶 | -0.1191 | -0.4180 | -0.1981 | 0.2608 | |
转化酶 | 0.0812 | 0.1351 | 0.2850 | -0.1778 | |
多酚氧化酶 | 0.0185 | 0.0308 | -0.0406 | 0.0650 | |
微生物总数量 | 过氧化氢酶 | 0.3720 | 0.1060 | 0.1763 | -0.2321 |
脲酶 | -0.1055 | -0.3700 | -0.1754 | 0.2309 | |
转化酶 | 0.1012 | 0.1683 | 0.3550 | -0.2215 | |
多酚氧化酶 | -0.0664 | -0.1104 | 0.1454 | -0.2330 |
微生物 | 通径指标 | 过氧化氢酶 | 脲酶 | 转化酶 | 多酚氧化酶 |
---|---|---|---|---|---|
真菌 | 过氧化氢酶 | 0.0240 | 0.0068 | 0.0114 | -0.0150 |
脲酶 | -0.1992 | -0.6990 | -0.3313 | 0.4362 | |
转化酶 | -0.0120 | -0.0199 | -0.0420 | 0.0262 | |
多酚氧化酶 | 0.0764 | 0.1270 | -0.1672 | 0.2680 | |
细菌 | 过氧化氢酶 | 0.3710 | 0.1057 | 0.1759 | -0.2315 |
脲酶 | -0.1052 | -0.3690 | -0.1749 | 0.2303 | |
转化酶 | 0.1012 | 0.1683 | 0.3550 | -0.2215 | |
多酚氧化酶 | -0.0670 | -0.1114 | 0.1466 | -0.2350 | |
放线菌 | 过氧化氢酶 | 0.4180 | 0.1191 | 0.1981 | -0.2608 |
脲酶 | -0.1191 | -0.4180 | -0.1981 | 0.2608 | |
转化酶 | 0.0812 | 0.1351 | 0.2850 | -0.1778 | |
多酚氧化酶 | 0.0185 | 0.0308 | -0.0406 | 0.0650 | |
微生物总数量 | 过氧化氢酶 | 0.3720 | 0.1060 | 0.1763 | -0.2321 |
脲酶 | -0.1055 | -0.3700 | -0.1754 | 0.2309 | |
转化酶 | 0.1012 | 0.1683 | 0.3550 | -0.2215 | |
多酚氧化酶 | -0.0664 | -0.1104 | 0.1454 | -0.2330 |
处理 | 指标 | 过氧化氢酶 | 脲酶 | 转化酶 | 多酚氧化酶 | 真菌 | 细菌 | 放线菌 | 微生物总数量 |
---|---|---|---|---|---|---|---|---|---|
CK | 过氧化氢酶 | 1 | |||||||
脲酶 | 0.451 | 1 | |||||||
转化酶 | 0.008 | 0.221 | 1 | ||||||
多酚氧化酶 | -0.734* | -0.440 | -0.111 | 1 | |||||
真菌 | -0.282 | -0.771* | 0.056 | 0.381 | 1 | ||||
细菌 | -0.532 | -0.529 | -0.152 | 0.186 | 0.567 | 1 | |||
放线菌 | -0.129 | -0.496 | 0.136 | 0.335 | 0.773 | 0.433 | 1 | ||
微生物总数量 | -0.531 | -0.532 | -0.150 | 0.188 | 0.572 | 1.000* | 0.440 | 1 | |
TR1 | 过氧化氢酶 | 1 | |||||||
脲酶 | 0.024 | 1 | |||||||
转化酶 | -0.412 | 0.240 | 1 | ||||||
多酚氧化酶 | -0.136 | -0.128 | 0.220 | 1 | |||||
真菌 | -0.006 | -0.743* | -0.241 | 0.408 | 1 | ||||
细菌 | 0.062 | -0.697* | -0.228 | 0.011 | 0.685* | 1 | |||
放线菌 | -0.281 | -0.681* | -0.117 | 0.152 | 0.810* | 0.720* | 1 | ||
微生物总数量 | 0.058 | -0.700* | -0.227 | 0.013 | 0.689* | 1.000* | 0.726* | 1 | |
TR2 | 过氧化氢酶 | 1 | |||||||
脲酶 | -0.321 | 1 | |||||||
转化酶 | -0.013 | -0.222 | 1 | ||||||
多酚氧化酶 | -0.265 | 0.318 | 0.498 | 1 | |||||
真菌 | 0.130 | -0.815* | 0.099 | -0.141 | 1 | ||||
细菌 | 0.187 | -0.832* | 0.279 | -0.403 | 0.724* | 1 | |||
放线菌 | 0.410 | -0.495 | 0.168 | -0.102 | 0.409 | 0.553 | 1 | ||
微生物总数量 | 0.189 | -0.832* | 0.279 | -0.402 | 0.724* | 1.000* | 0.559 | 1 |
处理 | 指标 | 过氧化氢酶 | 脲酶 | 转化酶 | 多酚氧化酶 | 真菌 | 细菌 | 放线菌 | 微生物总数量 |
---|---|---|---|---|---|---|---|---|---|
CK | 过氧化氢酶 | 1 | |||||||
脲酶 | 0.451 | 1 | |||||||
转化酶 | 0.008 | 0.221 | 1 | ||||||
多酚氧化酶 | -0.734* | -0.440 | -0.111 | 1 | |||||
真菌 | -0.282 | -0.771* | 0.056 | 0.381 | 1 | ||||
细菌 | -0.532 | -0.529 | -0.152 | 0.186 | 0.567 | 1 | |||
放线菌 | -0.129 | -0.496 | 0.136 | 0.335 | 0.773 | 0.433 | 1 | ||
微生物总数量 | -0.531 | -0.532 | -0.150 | 0.188 | 0.572 | 1.000* | 0.440 | 1 | |
TR1 | 过氧化氢酶 | 1 | |||||||
脲酶 | 0.024 | 1 | |||||||
转化酶 | -0.412 | 0.240 | 1 | ||||||
多酚氧化酶 | -0.136 | -0.128 | 0.220 | 1 | |||||
真菌 | -0.006 | -0.743* | -0.241 | 0.408 | 1 | ||||
细菌 | 0.062 | -0.697* | -0.228 | 0.011 | 0.685* | 1 | |||
放线菌 | -0.281 | -0.681* | -0.117 | 0.152 | 0.810* | 0.720* | 1 | ||
微生物总数量 | 0.058 | -0.700* | -0.227 | 0.013 | 0.689* | 1.000* | 0.726* | 1 | |
TR2 | 过氧化氢酶 | 1 | |||||||
脲酶 | -0.321 | 1 | |||||||
转化酶 | -0.013 | -0.222 | 1 | ||||||
多酚氧化酶 | -0.265 | 0.318 | 0.498 | 1 | |||||
真菌 | 0.130 | -0.815* | 0.099 | -0.141 | 1 | ||||
细菌 | 0.187 | -0.832* | 0.279 | -0.403 | 0.724* | 1 | |||
放线菌 | 0.410 | -0.495 | 0.168 | -0.102 | 0.409 | 0.553 | 1 | ||
微生物总数量 | 0.189 | -0.832* | 0.279 | -0.402 | 0.724* | 1.000* | 0.559 | 1 |
[1] | IPCC. Climate change 2013: The physical science basis [M]. Cambrige: Cambridge University Press, 2013. |
[2] | 赵宗慈, 罗勇, 黄建斌. 回顾年—年[J]. 气候变化研究进展, 2018,14(5):540-546. |
[3] |
Hu H W, Macdonald C, Trivedi P, et al. Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems[J]. Soil Biology and Biochemistry, 2016,92:1-15.
doi: 10.1016/j.soilbio.2015.09.008 URL |
[4] |
Tfaily M, Hess N, Koyama A, et al. Elevated [CO2] changes soil organic matter composition and substrate diversity in an arid ecosystem[J]. Geoderma, 2018,330:1-8.
doi: 10.1016/j.geoderma.2018.05.025 URL |
[5] | Sofi J, Lone A, Ganie M, et al. Soil microbiological activity and carbon dynamics in the current climate change scenarios: a review[J]. Pedosphere, 2016,26(5):577-591. |
[6] |
Xue S, Yang X, Liu G, et al. Effects of elevated CO2 and drought on the microbial biomass and enzymatic activities in the rhizospheres of two grass species in Chinese loess soil[J]. Geoderma, 2017,286:25-34.
doi: 10.1016/j.geoderma.2016.10.025 URL |
[7] | 王京伟. 覆膜滴灌对大棚作物根区土壤微环境及作物生长的影响[D]. 杨凌:西北农林科技大学, 2017. |
[8] | Wang Y, Yan D, Wang J, et al. Effects of elevated CO2 and drought on plant physiology, soil carbon and soil enzyme activities[J]. Pedosphere, 2017,27(5):846-855. |
[9] | Wu Q, Zhang C, Liang X, et al. Elevated CO2 improved soil nitrogen mineralization capacity of rice paddy[J]. Science of the Total Environment, 2019,710:1-8. |
[10] |
Wang Y, Yan D, Wang J, et al. Long-termelevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials[J]. Science of the Total Environment, 2019,652:1474-1481.
doi: 10.1016/j.scitotenv.2018.10.353 URL |
[11] |
Kumar A, Nayak A, Das B, et al. Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2[J]. Sci Total Environ, 2019,650(2):2032-2050.
doi: 10.1016/j.scitotenv.2018.09.332 URL |
[12] | 石元豹, 曹兵, 宋丽华. 浓度倍增对宁夏枸杞种植地土壤养分及微生物的影响[J]. 江苏农业学报, 2016,32(01):201-206. |
[13] |
Thakur M, Delreal I, Cesarz S, et al. Soil microbial, nematode, and enzymatic responses to elevated CO2 N fertilization, warming, and reduced precipitation[J]. Soil Biology & Biochemistry, 2019,135:184-193.
doi: 10.1016/j.soilbio.2019.04.020 URL |
[14] | 哈蓉, 马亚平, 曹兵, 等. 模拟浓度升高对宁夏枸杞营养生长与果实品质的影响[J]. 林业科学, 2019,55(6):28-36. |
[15] |
赵琴, 潘静, 曹兵, 等. 气温升高与干旱胁迫对宁夏枸杞光合作用的影响[J]. 生态学报, 2015,35(18):6016-6022.
doi: 10.5846/stxb201401090073 URL |
[16] |
Ma Y, Reddy V, Devi M, et al. De novo characterization of the Goji berry (Lycium barbarium L.) fruit transcriptome and analysis of candidate genes involved in sugar metabolism under different CO2 concentrations[J]. Tree Physiology, 2019,39(6):1032-1045.
doi: 10.1093/treephys/tpz014 URL pmid: 30824924 |
[17] | 郭芳芸, 哈蓉, 马亚平, 等. 浓度升高对宁夏枸杞苗木光合特性及生物量分配影响[J]. 西北植物学报, 2019,39(2):302-309. |
[18] | 陆宁海, 杨蕊, 郎剑锋, 等. 秸秆还田对土壤微生物种群数量及小麦茎基腐病的影响[J]. 中国农学通报, 2019,35(34):102-108. |
[19] | 周礼恺, 张志明. 土壤酶活性的测定方法[J]. 土壤通报, 1980,5:37-38. |
[20] |
Fanin N, Kardol P, Farrell M, et al. Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems[J]. Ecology Letters, 2019,22(7):1095-1103.
doi: 10.1111/ele.13266 URL pmid: 30957419 |
[21] | 周娅, 冯倩, 王玉, 等. 覆膜玉米不同生育期土壤酶活性对大气浓度升高的响应[J]. 农业环境科学学报, 2019,38(5):1185-1192. |
[22] |
He W, Moonis M, Chung H, et al. Effects of high soil CO2 concentrations on seed germination and soil microbial activities[J]. International Journal of Greenhouse Gas Control, 2016,53:117-126.
doi: 10.1016/j.ijggc.2016.07.023 URL |
[23] |
Yang Y, Tilman D, Furey G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature Communications, 2019,10(1):1-7.
doi: 10.1038/s41467-018-07882-8 URL pmid: 30602773 |
[24] | Padhy S, Nayak S, Dash P, et al. Elevated carbon dioxide and temperature imparted intrinsic drought tolerance in aerobic rice system through enhanced exopolysaccharide production and rhizospheric activation[J]. Agriculture, Ecosystems & Environment, 2018,268:52-60. |
[25] | Wilschut R, Vander Putten W, Garbeva P, et al. Root traits and belowground herbivores relate to plant-soil feedback variation among congeners[J]. Nature Communcations, 2019,10(1):1-9. |
[26] |
Mcfarland J, Waldrod M, Haw M. Extreme CO2 disturbance and the resilience of soil microbial communities[J]. Soil Biology and Biochemistry, 2013,65:274-286.
doi: 10.1016/j.soilbio.2013.04.019 URL |
[27] | 刘磊, 李彩凤, 郭广昊, 等. NaCl+Na2SO4胁迫对甜菜根际土壤微生物数量及酶活性的影响[J]. 核农学报, 2016,30(10):2033-2040. |
[28] |
Luo X, Hou E, Zang X, et al. Effects of elevated atmospheric CO2 and nitrogen deposition on leaf litter and soil carbon degrading enzyme activities in a Cd-contaminated environment: A mesocosm study[J]. Science of the Total Environment, 2019,671:157-164.
doi: 10.1016/j.scitotenv.2019.03.374 URL |
[29] | 吴秀臣, 孙辉, 杨万勤. 土壤酶活性对温度和CO2浓度升高的响应研究[J]. 土壤, 2007,39(3):358-363. |
[30] | 辛丽花, 韩士杰, 郑俊强, 等. CO2浓度升高对土壤微生物及土壤酶影响的研究进展[J]. 土壤通报, 2006,37(6):1231-1235. |
[31] | 李奕霏, 肖谋良, 袁红朝, 等. CO2倍增对稻田土壤碳氮水解酶活性的影响[J]. 中国环境科学, 2018,38(9):3474-3480. |
[32] | Panneerselvam P, Kumar U, Senapati A, et al. Influence of elevated CO2 on arbuscular mycorrhizal fungal community elucidated using Illumina MiSeq platform in sub-humid tropical paddy soil[J]. Applied Soil Ecology, 2020,145:1-9. |
[33] | 田然, 周辉, 黄娟, 等. 大气浓度升高条件下土壤镉污染对土壤酶及微生物群落多样性的影响[J]. 南京大学学报:自然科学版, 2011,47(6):712-717. |
[34] | 张玉兰, 张丽莉, 陈利军, 等. 稻-麦轮作系统土壤水解酶及氧化还原酶活性对开放式空气浓度增高的响应[J]. 应用生态学报, 2004,15(06):1014-1018. |
[35] | 马志良, 赵文强, 刘美. 高寒灌丛生长季根际和非根际土壤多酚氧化酶和过氧化氢酶活性对增温的响应[J]. 应用生态学报, 2019,30(11):3681-3688. |
[36] | 任欣伟, 唐景毅, 柳静臣, 等. 不同氮水平下升高及增温对幼苗土壤酶活性的影响[J]. 北京林业大学学报, 2014,36(5):44-53. |
[37] | 周娅. 旱作玉米农田土壤酶活性及微生物量碳氮对施氮、覆膜与大气CO2浓度升高的响应[D]. 杨凌:西北农林科技大学, 2019. |
[38] |
Zhang Y, Virjamo V, Sobuj N, et al. Elevated temperature and CO2 affect responses of European aspen (Populus tremula) to soil pyrene contamination[J]. Science of the Total Environment, 2018,634:150-157.
doi: 10.1016/j.scitotenv.2018.03.344 URL |
[39] | 刘远, 潘根兴, 张辉, 等. 大气浓度和温度升高对麦田土壤呼吸和酶活性的影响[J]. 农业环境科学学报, 2017,36(08):1484-1491. |
[1] | XU Lingqing, LI Jiajia, CHANG Xiao, ZHANG Yunlong, LIU Dali. The Mechanism of Soil Nitrogen Mineralization: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 97-101. |
[2] | HONG Ciqing, SUN Yuyao, MO Wenjing, FANG Yun, CHEN Fangrong, GUI Fangze, GUAN Xiong, PAN Xiaohong. Effects of Nano-silver Prepared from Tea Extract on Soil Microorganisms [J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 56-63. |
[3] | LI Xingyue, YI Jun, FU Huijuan, LI Qiyong, LU Wenyi, LUO Congcong, ZHANG Hong. Effects of Photosynthetic Bacteria and Biological Coating on Soil Enzyme Activities and Yield of Rape [J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 87-91. |
[4] | WANG Jianbo, WANG Jifeng, FU Xiaoling, ZHONG Haixiu, LIU Yingnan, NI Hongwei. Effects of Different Nitrogen Supply on Photosynthetic Characteristics and Growth of Calamagrostis angustifolia Under Elevated CO2 Concentration [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 44-50. |
[5] | Lin Xiuyan, Jiang Zewei, Chen Xi, Zhang Shuna, Dai Huidong, Yang Shihong. The Response of Soil Microbial Quantity and Enzyme Activity to Water and Carbon Control Regulation in Paddy Fields [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 75-80. |
[6] | Fu Huijuan, Li Xingyue, Yang Wuyun, Li Qiyong, Wei Huiting, Yi Jun, Zhang Hong. Different Seed Coating Formulations: Effects on Wheat Yield and Rhizosphere Soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 31-35. |
[7] | Zhao Xu, Song Qinghui, Wang Xiaohui, Wang Xuegang, Feng Yuhan, Sun Simiao, Li Hongtao, Chang Wei, Song Fuqiang. Several Organic Fertilizers: Effects on Photosynthetic Characteristics of Maize and Soil Enzyme Activities [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 36-42. |
[8] | Li Linrong, Feng Jianlu, Liu Miaomiao, Mei Hao, Kang Zhenye, Cai Qingnian. Effect of Crop Planting Patterns on Soil Microorganisms and Crop Pests in Farmland [J]. Chinese Agricultural Science Bulletin, 2021, 37(29): 99-106. |
[9] | Xie Hongbao, Yu He, Chen Yimin, Sui Yueyu, Jiao Xiaoguang. Effects of Straw Buried Deep on Invertase Activity in Soil with Different Nitrogen Fertilizer Levels [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 79-83. |
[10] | Shen Fangfang, Zhang Zhe, Yuan Yinghong, . Effects of Biochar and Organic Manure Combined Application on Soil Enzyme Activities and Microbial Community Component in Upland Red Soil [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 65-74. |
[11] | Guo Xinsong, Yu Xiaodong, Zhang Jing, Zhang Peiping, Zhao Hua, Du Dongliang, Ma Xinlei, Ding Fangjun. Temporal Variation of Rootzone Soil Fertility in Different Planting Years of Peach Orchards [J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 65-71. |
[12] | Gao Dujuan, Liu Xinglu, Lan Zhibin, Zhao Yang, Chen Youde, Zhou Bin, Lv Yanmei, Luo Xianfu, Tang Shanjun. Effect of Rice-rapeseed Annual Tillage Patterns on Soil Microecology [J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 74-81. |
[13] | Lei Yuhong, Wang Fake, Xu Xuelian, Hou Yue, Yan Liangdong, Li Chunhui, Liang Zhiyong. Model Construction of the Relationship Between the Yield of Lycium barbarum and Meteorological Condition in Qaidam Area [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 89-93. |
[14] | Kang Yongjian, Zhao Baoping, Sun Wen, Liu Ruifang, Liu Jinghui. Effects of Fertilizer Reduction Combined with Bio-organic Fertilizer on Soil Characteristics and Oat Yield [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 59-64. |
[15] | Zhao Xuetong, Xu Siqi, Zhang Qi, Pan Wenzheng, Shang Haili, Wang Bin, Wang Jingxian, Zhao Rongbiao. Effect of Walnut Special Bio-organic-inorganic Compound Fertilizer on Walnut Planting [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 108-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||