Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (9): 142-148.doi: 10.11924/j.issn.1000-6850.casb2020-0340
Previous Articles Next Articles
Xu Mingyu1,2(), Du Chunmei1,2(
)
Received:
2020-08-07
Revised:
2020-10-16
Online:
2021-03-25
Published:
2021-04-09
Contact:
Du Chunmei
E-mail:835686121@qq.com;1487598102@qq.com
CLC Number:
Xu Mingyu, Du Chunmei. The Control of Citrus Blue Mold: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 142-148.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0340
[1] | Strano M C, Altieri G, Admane N, et al. Advance in citrus postharvest management: Diseases, cold storage and quality evaluation[M]. Citrus Pathology, 2017,154(35):120-134. |
[2] |
Sui Y, Wisniewski M, Droby S, et al. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat?[J]. Trends in Food Science & Technology, 2016,51(15):34-40.
doi: 10.1016/j.tifs.2016.03.004 URL |
[3] |
Diana B Q G, Aurelio L M, María E S M, et al. Postharvest heat treatments to inhibit Penicillium digitatum growth and maintain quality of Mandarin (Citrus reticulata blanco)[J]. Heliyon, 2020,6(1):e03166.
doi: 10.1016/j.heliyon.2020.e03166 URL pmid: 31938749 |
[4] | Cote S, Rodoni L, Miceli E, et al. Effect of radiation intensity on the outcome of postharvest UV-C treatments[J]. Postharvest Biology & Technology, 2013,83(5):83-89. |
[5] |
Gündüz, Gülten T, Juneja V K, et al. Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens[J]. Food Control, 2015,57(3):9-13.
doi: 10.1016/j.foodcont.2015.04.003 URL |
[6] | Yamaga I, Kuniga T, Aoki S, et al. Effect of ultraviolet-B irradiation on disease development caused by Penicillium italicum in Satsuma mandarin fruit[J]. Horticultural Journal, 2016,85(13):86-91. |
[7] | Cerioni, Luciana, Cuello, et al. UV-B radiation on lemons enhances antifungal activity of flavedo extracts against Penicillium digitatum[J]. Lwt Food Science & Technology, 2017,85(21):96-103. |
[8] |
María T L, Fernando A. Effect of LED blue Light on Penicillium digitatum and Penicillium italicum strains[J]. Photochemistry & Photobiology, 2015,91(6):1412-1421.
doi: 10.1111/php.12519 URL pmid: 26288067 |
[9] |
Palou L, Smilanick J L, Crisosto C H, et al. Ozone gas penetration and control of the sporulation of Penicillium digitatum and Penicillium italicum within commercial packages of oranges during cold storage[J]. Crop Protection, 2003,22(9):1131-1134.
doi: 10.1016/S0261-2194(03)00145-5 URL |
[10] |
Ouf S A, Moussa T A A, Abd E A S M, et al. Anti-fungal potential of ozone against some dermatophytes[J]. Brazilian Journal of Microbiology, 2016,47(3):697-702.
doi: 10.1016/j.bjm.2016.04.014 URL pmid: 27287337 |
[11] |
García M, Juan F, Olmo M, et al. Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility[J]. Postharvest Biology and Technology, 2018,137(15):77-85.
doi: 10.1016/j.postharvbio.2017.11.015 URL |
[12] | Liu K, Wang C, Hu H, et al. Indirect treatment effects of water-air MHCD jet on the inactivation of Penicillium digitatum Suspension[J]. Plasma ence, IEEE Transactions on, 2016,44(11):2729-2737. |
[13] | Smilanick J L, Mansour M F, Gabler F M, et al. The effectiveness of pyrimethanil to inhibit germination of Penicillium digitatum and to control citrus green mold after harvest[J]. Postharvest Biology & Technology, 2006,42(1):75-85. |
[14] |
Pedro A, Moscoso R, Montesinos H C, et al. Characterization of postharvest treatments with sodium methylparaben to control citrus green and blue molds[J]. Postharvest Biology and Technology, 2013,77(2):128-137.
doi: 10.1016/j.postharvbio.2012.10.007 URL |
[15] |
Montesinos H C, Moscoso R, Pedro A, et al. Evaluation of sodium benzoate and other food additives for the control of citrus postharvest green and blue molds[J]. Postharvest Biology and Technology, 2016,115(6):72-80.
doi: 10.1016/j.postharvbio.2015.12.022 URL |
[16] | Ippolito A, Sanzani S M. Control of postharvest decay by the integration of pre and postharvest application of nonchemical compounds[J]. Acta Horticulturae, 2011,905(3):135-143. |
[17] | Youssef K, Roberto S R. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of 'Italia' table grapes[J]. Postharvest Biology & Technology, 2014,87(6):95-102. |
[18] | Youssef K, Sanzani S M, Myrta A, et al. Effect of a novel potassium bicarbonate-based formulation against Penicillium decay of oranges[J]. Journal of Plant Pathology, 2014,96(2):419-424. |
[19] | Smilanick J L, Mansour M, Sorenson D. Performance of fogged disinfectants to inactivate conidia of Penicillium digitatum within citrus degreening rooms[J]. Postharvest Biology & Technology, 2014,91(2):134-140. |
[20] |
D'Aquino S, Fadda A, Barberis A, et al. Combined effects of potassium sorbate, hot water and thiabendazole against green mould of citrus fruit and residue levels[J]. Food Chemistry, 2013,141(2):858-864.
doi: 10.1016/j.foodchem.2013.03.083 URL |
[21] | Hao W, Zhong G, Hu M, et al. Control of citrus postharvest green and blue mold and sour rot by tea saponin combined with imazalil and prochloraz[J]. postharvest biology & technology, 2010,56(1):39-43. |
[22] | Mamoci E, Hasalliu R, Hodaj E, et al. Effect of essential oils on Penicillim digitatum growth[J]. Albanian Journal of Agricultural Sciences, 2014,13(1):1-7. |
[23] | Naima S, Maryline A V, Mohamed E M, et al. Valorization of citrus by-products using Microwave Steam Distillation (MSD)[J]. Innovative Food Science & Emerging Technologies, 2016,12(2):163-170. |
[24] |
Tao N, Jia L, Zhou H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum[J]. Food Chemistry, 2014,153(24):265-271.
doi: 10.1016/j.foodchem.2013.12.070 URL |
[25] |
Dou S, Liu S, Xu X, et al. Octanal inhibits spore germination of Penicillium digitatum involving membrane peroxidation[J]. protoplasma, 2016:16(3) 1-7.
doi: 10.1007/BF01638793 URL |
[26] |
Wuryatmo E, Able A J, Ford C M, et al. Effect of volatile citral on the development of blue mould, green mould and sour rot on navel orange[J]. Australasian Plant Pathology, 2014,43(4):403-411.
doi: 10.1007/s13313-014-0281-z URL |
[27] |
Martínez J A, González R. Essential oils from clove affect growth of Penicillium species obtained from lemons[J]. Communications in agricultural and applied biological sciences, 2013,78(3):563-572.
pmid: 25151832 |
[28] |
He S, Ren X, Lu Y, et al. Microemulsification of clove essential oil improves its in vitro and in vivo control of Penicillium digitatum[J]. Food Control, 2016,65(12):106-111.
doi: 10.1016/j.foodcont.2016.01.020 URL |
[29] |
Duan X, OuYang Q, Tao N, et al. Effect of applying cinnamaldehyde incorporated in wax on green mould decay in citrus fruits[J]. Science of Food and Agriculture, 2019,98(2):1-18.
doi: 10.1002/jsfa.8577 URL |
[30] | Fan F, Tao N, Jia L, et al. Use of citral incorporated in postharvest wax of citrus fruit as a botanical fungicide against Penicillium digitatum[J]. postharvest biology & technology, 2014,90(3):52-55. |
[31] |
Obagwu J, Korsten L. Control of citrus green and blue molds with garlic extracts[J]. European Journal of Plant Pathology, 2003,109(3):221-225.
doi: 10.1023/A:1022839921289 URL |
[32] | Musto M, Potenza G, Cellini F. Inhibition of Penicillium digitatum by a crude extract from Solanum nigrum leaves[J]. Biotechnology, Agronomy, Society and Environment, 2014,18(2):174-180. |
[33] |
Leelasuphakul W, Hemmanee P, Chuenchitt S. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit[J]. Postharvest Biology and Technology, 2008,48(1):113-121.
doi: 10.1016/j.postharvbio.2007.09.024 URL |
[34] |
Tu Q, Chen J, Guo J. Screening and identification of antagonistic bacteria with potential for biological control of Penicillium italicum of citrus fruits[J]. Scientia Horticulturae, 2013,150(2):125-129.
doi: 10.1016/j.scienta.2012.10.018 URL |
[35] | Tu Q, Chen J, Guo J. Control of postharvest blue mold of nanfeng mandarin by application of strain YS-1 Paenibacillus brasilensis[J]. Journal of Food Science, 2013,78(5):868-873. |
[36] | Demirci, Fikret. Effects of Pseudomonas fluorescens and Candida famata on blue mould of citrus caused by Penicillium italicum[J]. Australian Journal of Crop Science, 2011,5(3):344-349. |
[37] | Tremonte P, Pannella G, Succi M, et al. Antimicrobial activity of Lactobacillus plantarum strains isolated from different environments: A preliminary study[J]. International Food Research Journal, 2017,24(2):852-859. |
[38] |
Gerez C L, Carbajo M S, Rollan G, et al. Inhibition of citrus fungal pathogens by using lactic acid bacteria[J]. Journal of Food Science, 2010,75(6):354-359.
doi: 10.1111/j.1750-3841.2010.01671.x pmid: 20722936 |
[39] |
Hamid M, Sagi G, Zafar I, et al. Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action[J]. Postharvest Biology and Technology, 2006,39(2):125-133 .
doi: 10.1016/j.postharvbio.2005.10.007 URL |
[40] | Rosa-Magri M M, Tauk-Tornisielo S M, Ceccato-Antonini S R, et al. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds[J]. Brazilian Archives Of Biology And Technology, 2011,54(1):1-5. |
[41] |
Long C A, Wu Z, Deng B X. Biological control of Penicillium italicum of citrus and Botrytis cinerea of grape by strain 34-9 of Kloeckera apiculata[J]. European Food Research and Technology, 2005,221(19):197-201.
doi: 10.1007/s00217-005-1199-z URL |
[42] |
Abraham A O, Laing M D, Bower J P. Isolation and in vivo screening of yeast and Bacillus antagonists for the control of Penicillium digitatum of citrus fruit[J]. Biological Control, 2010,53(1):32-38.
doi: 10.1016/j.biocontrol.2009.12.009 URL |
[43] |
Platania C, Restuccia C, Muccilli S, et al. Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis)[J]. food microbiology, 2012,30(1):219-225.
doi: 10.1016/j.fm.2011.12.010 pmid: 22265304 |
[44] |
Talibi I, Boubaker H, Boudyach E H, et al. Alternative methods for the control of postharvest citrus diseases[J]. Journal of Applied Microbiology, 2014,117(1):1-7.
doi: 10.1111/jam.12495 pmid: 24617532 |
[45] |
Ramsés R G E, Valle F D J A, Juan A R S, et al. Use of a marine yeast as a biocontrol agent of the novel pathogen Penicillium citrinum on Persian lime[J]. Emirates Journal of Food and Agriculture, 2017,29(2):114-122.
doi: 10.9755/ejfa. URL |
[46] | Liu Y, Wang W H, Zhou Y H, et al. Isolation, identification and in vitro screening of Chongqing orangery yeasts for the biocontrol of Penicillium digitatum on citrus fruit[J]. Biological Control Theory & Application in Pest Management, 2017,110(5):18-24. |
[47] |
Cunha T D, Ferraz L P, Wehr P P, et al. Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum[J]. International Journal of Food Microbiology, 2018,276(3):20-27.
doi: 10.1016/j.ijfoodmicro.2018.03.019 URL |
[48] | Perez M F, Isas A S, Aladdin A, et al. Killer yeasts as biocontrol agents of postharvest fungal diseases in lemons[C]. Sustainable Technologies for the Management of Agricultural Wastes, 2018,99(2):87-98. |
[49] |
María F P, Mariana A D, Martina M P, et al. Biocontrol features of Clavispora lusitaniae against Penicillium digitatum on lemons[J]. Postharvest Biology and Technology, 2019,155(1):57-64.
doi: 10.1016/j.postharvbio.2019.05.012 URL |
[50] |
Parafati L, Vitale A, Restuccia C, et al. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape[J]. Food microbiology, 2015,47(5):85-92.
doi: 10.1016/j.fm.2014.11.013 URL |
[51] |
Wang W, Deng L, Yao S, et al. Control of green and blue mold and sour rot in citrus fruits by the cationic antimicrobial peptide PAF56[J]. Postharvest Biology and Technology, 2018,136(3):132-138.
doi: 10.1016/j.postharvbio.2017.10.015 URL |
[1] | HU Shuai, LUO Liping, SUN Meng, YANG Yu, WEN Junbao. Combined Control of Semanotus bifasciatus by Pyemotes zhonghuajia and Scleroderma guani [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 107-111. |
[2] | YAN Fangfang, KONG Chuixu, ZHANG Yingjie, MAO Min, JIAN Lianjun, WANG Rong. Biological Control of Tobacco Root-knot Nematode Disease by Penicillium purpurogenum K1 [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 103-108. |
[3] | YANG Xiaoxiang, HUANG Xiaoqin, ZHANG Lei, ZHANG Zhongmei, XIAN Yunxi, ZHOU Xiquan, LIU Yong. Biocontrol Fungus Coniothyrium minitans: Effects on Microbial Community Structure in Oilseed Rape Rhizosphere Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 92-98. |
[4] | SHEN Xiuxian, TIAN Tai’an, LIU Jianfeng, YU Xiaofei, DONG Xiangli, LI Zhimo, YANG Maofa. The 5th Instar Nymph of Picromerus lewisi: Predation Responses to Different Instars of Mythimna seperata [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 116-120. |
[5] | FU Huijuan, LI Xingyue, YI Jun, LI Qiyong, XU Bingzhi, CHEN Youhua, LUO Congcong, ZHANG Hong. Major Biological Disasters of Dry Farming in Sichuan Hilly Areas: Control Strategy and Technology [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 140-147. |
[6] | SONG Xiaobing, HUANG Feng, LUO Xiaoling, LIN Peihua, PENG Aitian, LING Jinfeng, CUI Yiping. Pyraclostrobin: Toxicity Determination and Control Effect on the Pathogens of Two Rare Fruits [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 125-128. |
[7] | LI Xiaoyan, NI Chang, LIU Xu. Effects of Different Control Methods on Root-knot Nematode of Greenhouse Cucumber [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 130-133. |
[8] | LIU Long, RONG Hua, ZHENG Tongtong, MA Junjie, GUO Qingyuan. Antifungal and Control Effect of Bacillus mojavensis on Pear Valsa Canker [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 140-146. |
[9] | REN Chunyan, LIU Jie, LUO Minghua, NIE Zhongyang, HUANG Ning, ZHAO Haiyan, TANG Liangde. A Review on Arma chinensis Fallou (Hemiptera: Pentatomidae): A Natural Enemy Insect [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 100-109. |
[10] | LUO Zhenya, LIN Shaoyuan, QUAN Linfa, CHI Yanyan, CHEN Bingxu, XU Shu. Six Insecticides Against Spodoptera frugiperda in Maize: Field Application Evaluation in Guangdong [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 124-130. |
[11] | Lu Qiucheng, Liu Dongyang, Wang Yong, Xu Jinlan, Jiang Lianqiang, Liu Chao, Cai Peng, Li Yuejian, He Hengguo, Pu Deqiang. Effects of Different Carotene Concentrations and Feed Preparation Methods on Larvae of Coccinella Septempunctata [J]. Chinese Agricultural Science Bulletin, 2021, 37(35): 82-87. |
[12] | Yang Bing, Ping Yuan, Du Chunmei. Pathogenic Mechanism and Control Method of Potato Scab: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 131-137. |
[13] | Ji Yanfei, Dong Xinxin, Tian Ye, Zhang Jie, Yang Hongyi. PGPR: The Biological Control Mechanism and Potential as Biological Control Agent [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 141-149. |
[14] | Shen Yan, He Pengbo, He Pengfei, Wu Yixin, Kong Baohua, Li Xingyu, Shahzad Munir, He Yueqiu. Pathogen Identification and Biological Control of Gray Mold on Postharvest Tomato [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 102-107. |
[15] | Song Lili, Cong Lin, Zhang Yanru, Zhao Tingting, Jin Shulei, Wang Yanqun, Han Jie, Li Zicong. Advances in Biological Control of Leguminous Insect Pests [J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 113-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||