Chinese Agricultural Science Bulletin ›› 2016, Vol. 32 ›› Issue (15): 86-92.doi: 10.11924/j.issn.1000-6850.casb15100074
Previous Articles Next Articles
Received:
2015-10-19
Revised:
2016-05-06
Accepted:
2016-01-25
Online:
2016-06-01
Published:
2016-06-01
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb15100074
[1]Dai A G.Drought under global warming: a review[J].WIREs Clim Change, 2011, 2:45-65. [2]Hirschi M, Seneviratne S I, Alexandrov V, et al.Observational evidence for soil-moisture impact on hot extremes in southeastern Europe[J]. Nature Geoscience, 2011, 4(1):17-21. [3]Mueller B, Seneviratne S I. Hot days induced by precipitation deficits at the global scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31):12398-12403. [4]孔祥彬,白星焕,王同芹,等.玉米抗(耐)旱性的分子遗传研究进展[J].玉米科学,2009,17(5):58-60. [5]Cassman KG.Ecological intensification of cereal production systems: yield potential, soilquality, and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:5952–5959. [6]Datta SK. Rice biotechnology: a need for developing countries[J]. The Journal of Agrobiotechnology Management and Economics, 2004, 7:31–35. [7]BoyerJS. Plant productivity and environment (crop genetic improvement)[J]. Science, 1982, 218:443–448. [8]Godfray HCJ, Beddington JR, Crute IR,et al. Food security:the challenge of feeding 9 billion people[J]. Science, 2010, 327:812–818. [9]Peleg Z, Apse M P and Blumwald E. Engineering salinity and water-stress tolerance in crop plants: getting closer to the field[J]. Advances in Botanical Research, 2011,57: 405-443. [10]Ashraf M, Athar H R, Harris P J C, et al. Some prospective strategies for improving crop salt tolerance[J]. Advances in Agronomy, 2008, 97:45-110. [11]Ashraf M. Inducing drought tolerance in plants: Recent advances[J]. Biotechnology Advances, 2010, 28:169-183. [12]Dong Y, Wang C P, Han X, et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2014, 450(1):453-458. [13]Liu W X, Zhang F C, Zhang W Z, et al. Arabidopsis Di19 Functions as a transcription factor and modulates PR1, PR2 and PR5 expression in response to drought stress[J]. Molecular Plant, 2013, 6(5):1487-1502. [14]Bae H, Kim S H, Kim M S, et al. The drought responses of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses[J]. Plant Physiology and Biochemistry, 2008, 46(2):174-188. [15]Fan Q J, Yan F X, Qiao G, et al. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis[J]. Gene, 2014, 533(1):322-331. [16]shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways[J]. Current Opinion in Plant Biology, 2000, 3:217-223. [17]Hayano-kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, et al. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress an d recovery irrigation[J]. PLos one, 2009, 4(10):e7531. [18]孙庆玲.拟南芥AT14A蛋白调控干旱胁迫应答的转录组学研究[D].扬州:扬州大学硕士学位论文,2013. [19]Bais H P, Vepachedu R, Gilroy S, et al. Allelopathy and etotic plant invasion: From molecules and genes to species interaction[J]. Science, 2003, 301:1377-1380. [20]Wu S W, Hu C X, Tan Q L, et al. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress[J]. Plant Physiology and Biochemistry, 2014, 83:365-374. [21]Silva E N, Ferreira-Silva S L, Viegas R A, et al. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants[J].Environmental and Experimental Botany, 2010,69(3):279-285. [22]Gomes F P, Oliva M A, Mielke M S, et al. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J].Scientia Horticulturae, 2010, 126(3):379-384. [23]邹琦.植物对水分胁迫的响应及其在旱作农业和抗旱育种中的应用[A].见:吴平,陈昆松.植物分子生理学进展[M].杭州:浙江大学出版社,2000:207-215. [24]裴二芹,石云素,刘丕庆,等.干旱胁迫对不同玉米自交系苗期渗透调节的影响[J].植物遗传资源学报,2010,11(1):40-45. [25]姜淑欣,刘党校,庞红喜,等. PEG胁迫及复水对不同抗旱性小麦幼苗脯氨酸代谢关键酶活性的影响[J].西北植物学报,2014,34(8):1581-1587. [26]Serrano R, Gaxiola R. Microbial Models and salt stress tolerance in plants[J]. Critical Reviews in Plant Sciences, 1994, 13(2):121-138. [27]廖伟彪,张美玲.外源过氧化氢和脱落酸对3种萱草抗旱性的影响[J].干旱地区农业研究,2013,31(3):173-177. [28]沈波,李云荫.不同浓度脱落酸对冬小麦干旱诱导蛋白的影响[J].华北农学报,1994(9):65-70. [29]陈思奕,王佩茹.脱落酸对植物耐旱性的影响研究概述[J].生物学教学,2015(40):2-3. [30]ParkS. Y., Fung P., Nishimura N., et al. Abscisicacid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J].Science,2009(324): 1068–1071 [31]Ma Y., Szostkiewicz I., Korte A., et al. Regulatorsof PP2C phosphatase activity function as abscisic acid sensors. Science,2009(324):1064-1068。 [32]Ruth Finkelstein. Abscisic acid synthesis and response[J]. Arabidopsis book,2013,11:e0166. [33]张彤,齐麟.植物抗旱机理研究进展[J].湖北农业科学,2005(4):107-110. [34]焦蓉,刘好宝,刘贯山,等.论脯氨酸累积与植物抗渗透胁迫[J].中国农学通报,2011,27(7):216-221. [35]Benesova M, Hola D, Fischer L, et al. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration[J]. PLos one, 2012, 7(6):e38017. [36]邵宏波,梁宗锁,邵明安.小麦抗旱生理生化和分子生物学研究进展与趋势[J].草业学报,2006,15(3):5-17. [37]张永福,黄鹤平,银立新,等.冷(热)激对干旱胁迫下玉米活性氧清除及膜脂过氧化的调控机制[J].江苏农业科学,2015,(5):56-60. [38]Kammerloher W, Fischer U, Piechottka GP, et al. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system[J]. The Plant Journal, 1994, 6(2):187–199. [39]Maeshima M. TONOPLAST TRANSPORTERS: Organization and Function[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52 (1):469–497. [40]Wallace IS, Choi WG, Roberts DM. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins[J]. Biochimica Biophysica Acta, 2006, 1758 (8):1165–1175. [41]Johanson U, Gustavsson S. A new subfamily of major intrinsic proteins in plants[J].Molecular Biology and Evolution, 2002, 19(4):456–461. [42]Danielson J A, Johanson U. Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens[J]. BMC Plant Biology, 2008, 8:45. [11]Yousfi N, Slama I, Ghnaya T, et al.Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations[J]. Comptes Rendus Biologies, 2010, 333:205-213. [43]李涛,陈保冬.丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J].植物生态学报,2012,36(9):973-981. [44]Shimizu T, Kanamori Y, Furuki T, et al. Desiccation-induced structuralization and glass formation of Group 3 Late Embryogenesis Abundant protein model peptides[J]. Biochemistry, 2010.49(6):1093-1104. [45]钱刚,翟旭光,韩兆雪,等.西藏青稞LEA3蛋白新抗旱基因的克隆与序列分析[J].作物学报,2007,33(2):292-296. [46]孙晓娇,汤晓倩,于丽霞,等.高粱LEA3蛋白基因和启动子的克隆及序列分析[J].植物分类与资源学报,2013,35(5):585-593. [47]Liang J, Zhou M Q, Zhou X, et al. JcLEA, a novel LEA-Like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana[J]. PLos one, 2013,8(12):e83056. [48]张红梅.小麦干旱胁迫响应与LEA蛋白的蛋白质组学研究[D].西安:西北农林科技大学,博士学位论文.2014. [49]Song A P, Zhu X R, Chen F D, et al. A chrysanthemum heat shock protein confers tolerance to abiotic stress[J]. International Journal of Molecular Sciences, 2014, 15(3):5063-5078. [50]Shamim Z, Rashid B, Rahman R, et al. Expression of drought tolerance in transgenic cotton[J]. ScienceAsia, 2013, 39:1-11. [51]Yousfi N, Slama I, Ghnaya T, et al. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations[J]. Comptes Rendus Biologies, 2010, 333:205-213. [52]李博,田晓莉,王刚卫,等.苗期水分胁迫对玉米根系生长杂种优势的影响[J].作物学报,2008,34(4):662-668. [53]胡标林,扬平,万勇,等.东乡野生稻BILs群体苗期抗旱性综合评价及其遗传分析[J].植物遗传资源学报,2013,14(2):249-256. [54]Fischer K S, Edmeades G O, Johnson E C. Selection for the improvement of maize yield under moisture deficits[J]. Field Crop Research, 1989, 22:227-243. [55]陈志辉.玉米抗旱性QTL定位及抗旱品种选育研究[D].长沙:中南大学博士学位论文,2012. [56]马富举,李丹丹,蔡剑,等.干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响[J].应用生态学报,2012,23(3):724-730. [57]厉广辉,万勇善,刘风珍,等.不同抗旱性花生品种根系形态及生理特性[J].作物学报,2014,40(3):531-541. [58]Chimungu J, Maliro M, Nalivata P, et al. Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.)[J]. Field Crops Research,2015(171):86-98. [59]山仑,陈培元.旱地农业生态基础[M].北京:科学出版社,1998:9-33. |
[1] | LI Rongtian, SHI Liu, HUANG Liying, LIU Changhua. Breeding Introgression Line ‘Jijing 88’ (hd2/hd4) with Molecular Selection [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 1-9. |
[2] | YI Jiawen, FENG Di, ZHU Wei, QI Na, TENG Fengkui, LU Xiaoyin. Salt Tolerance of Rice Varieties at Germination Stage: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 10-14. |
[3] | XU Danyang, LI Hongying, SUN Yixiang, WU Gang, WANG Jiabao, YUAN Manman, WANG Peixuan, ZHANG Xiangming, SHU Xiaohai. Combined Application of Different Proportions of Organic and Inorganic Fertilizers: Effects on Rice Yield and Nitrogen Use Efficiency [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 1-5. |
[4] | FAN Huacai, ZENG Li, LI Weiyan, DING Yunxiu, GUO Zhixiang, LI Shu, XU Shengtao, ZHENG Sijun, WANG Yongbin. Bactericides Screening and Field Application for Banana Bacterial Soft Rot [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 113-118. |
[5] | YANG Wuguang, WANG Jun, WEN Kai, QIU Jingtao. Research Progress and Prospect of Rice-Turtle Farming in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 12-16. |
[6] | WANG Yang, ZHANG Rui, ZHOU Yuqing, LIU Yonghao, SHAHID Hussain, LIU Gaosheng, DAI Qigen. Analysis of Research Situation of Rice Salt Tolerance in China Based on Bibliometrics [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 147-153. |
[7] | LI Zhou, YANG Yayun, DAI Luyuan, ZHANG Feifei, A Xinxiang, DONG Chao, WANG Bin, TANG Cuifeng. Rice Bacterial Blight Resistance Genes and Resistance-related Factors: A Review on Research and Utilization [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 91-99. |
[8] | WANG Jingdong, HUI Jian, BAI Haibo, MA Sishuang, LI Shuhua. Rice Germination and Seedling Growth: Responses to the Regulation of Exogenous Substances [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 1-7. |
[9] | ZHONG Xuefen, CHONG Haotian, GUO Zhan, HUANG Liying, ZHANG Yunbo. Large-Panicle Rice Varieties: Synergistic Enhancement of Yield and Nitrogen Use Efficiency [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 1-6. |
[10] | HOU Fuyin, YANG Zhiqing, JIN Chongfu, SHI Kai, AN Chen, CHEN Changkuan. Effects of Application Amount of Biogas Slurry from Pig Manure on Agronomic Traits and Silage Quality of Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 124-131. |
[11] | HUANG Yanling, YAN Zhi, SHEN Guangle, WANG Hui, ZHANG Conghe, YANG Wei, CHEN Lin, ZHANG Yunhu, PANG Zhanshi, QIAO Mu, LI Fangbao, YANG Li. Bacterial Blight Resistance of Rice Sterile Line ‘Quan 211S’ Improved by Molecular Marker-Assisted Selection [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 133-139. |
[12] | ZHANG Jiaqi, GUO Zongshan, LIU Changhua, LI Rongtian. Genetic Diversity of Rice Varieties in Heilongjiang Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 1-9. |
[13] | ZHOU Fen, LIU Yuan, LI Zhongyang, LI Baogui, LI Lele, TAO Zhen. Remediation Effects of Conditioners and Cultivation Measures on Cadmium-contaminated Wheat Field [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 120-126. |
[14] | XU Jingju, YANG Ying, MA Qiang, LIU Lei, JING Wenjiang, ZHANG Ying, ZHANG Hao. Effect of Water Management on Rice Starch Quality: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 1-6. |
[15] | ZHANG Jun, FANG Shuliang, ZHOU Dongdong, ZHOU Nianbing, LIU Zhonghong, GE Mengjie. Characteristics of Yield and Quality of Long-Seedling-Age Machine-transplanted Japonica Rice with Good Taste Quality Under Straw Returning in Huaibei Area [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||