Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (27): 1-5.doi: 10.11924/j.issn.1000-6850.casb20190800542
Special Issue: 水稻
Liu Jingyan(), Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing()
Received:
2019-08-15
Revised:
2019-09-27
Online:
2020-09-25
Published:
2020-09-23
Contact:
Sun Linjing
E-mail:liujingyan826@qq.com;slj0469@sohu.com
CLC Number:
Liu Jingyan, Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing. Low Temperature Tolerance of Rice: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 1-5.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190800542
[1] |
Gross B L, Zhao Z. Archaeological and genetic insights into the origins of domesticated rice[J]. Proc Natl Acad Sci USA, 2014,111(17):6190-6197.
doi: 10.1073/pnas.1308942110 URL pmid: 24753573 |
[2] |
Xie G, Kato H, Imai R. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice[J]. Biochem J, 2012,443(1):95-102.
doi: 10.1042/BJ20111792 URL pmid: 22248149 |
[3] | Zhang Q, Chen Q, Wang S, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice (N Y), 2014,7:24. |
[4] |
Zhao J, Zhang S, Yang T, et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms[J]. Physiol Plant, 2015,154(3):381-394.
URL pmid: 25263631 |
[5] |
Liu C T, Wang W, Mao B G, et al. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects[J]. Yi Chuan, 2018,40(3):171-185.
URL pmid: 29576541 |
[6] |
Thomashow M F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:571-599.
URL pmid: 15012220 |
[7] |
Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytol, 2019,222(4):1690-1704.
doi: 10.1111/nph.15696 URL pmid: 30664232 |
[8] |
Liu J, Shi Y, Yang S. Insights into the regulation of C-repeat binding factors in plant cold signaling[J]. J Integr Plant Biol, 2018,60(9):780-795.
URL pmid: 29667328 |
[9] |
Medina J, Catala R, Salinas J. The CBFs: three arabidopsis transcription factors to cold acclimate[J]. Plant Sci, 2011,180(1):3-11.
URL pmid: 21421341 |
[10] |
Shi Y, Ding Y, Yang S. Molecular Regulation of CBF Signaling in Cold Acclimation[J]. Trends Plant Sci, 2018,23(7):623-637.
doi: 10.1016/j.tplants.2018.04.002 URL pmid: 29735429 |
[11] | Miquel, M, James Jr D, Dooner H, et al. Arabidopsis requires polyunsaturated lipids for low-temperature survival[J]. Proc Natl Acad Sci U S A, 1993,90(13):6208-6212. |
[12] |
Thorlby G, Fourrier N, Warren G. The SENSITIVE TO FREEZING2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a beta-glucosidase[J]. Plant Cell, 2004,16(8):2192-2203.
doi: 10.1105/tpc.104.024018 URL pmid: 15258268 |
[13] |
Moellering E R, Muthan B, Benning C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane[J]. Science, 2010,330(6001):226-228.
doi: 10.1126/science.1191803 URL pmid: 20798281 |
[14] |
Ma Y, Dai X, Xu Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015,160(6):1209-1221.
doi: 10.1016/j.cell.2015.01.046 URL pmid: 25728666 |
[15] |
Kumar S V, Wigge P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010,140(1):136-147.
doi: 10.1016/j.cell.2009.11.006 URL pmid: 20079334 |
[16] |
Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Mol Biol Rep, 2012,39(2):969-987.
doi: 10.1007/s11033-011-0823-1 URL pmid: 21573796 |
[17] |
Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997,94(3):1035-1040.
doi: 10.1073/pnas.94.3.1035 URL pmid: 9023378 |
[18] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998,10(8):1391-1406.
doi: 10.1105/tpc.10.8.1391 URL pmid: 9707537 |
[19] |
Jia Y, Ding Y, Shi Y, et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis[J]. New Phytol, 2016,212(2):345-353.
doi: 10.1111/nph.14088 URL pmid: 27353960 |
[20] |
Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2004,101(11):3985-3990.
URL pmid: 15004278 |
[21] |
Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proc Natl Acad Sci U S A, 2007,104(52):21002-21007.
URL pmid: 18093929 |
[22] |
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annu Rev Plant Biol, 2006,57:781-803.
URL pmid: 16669782 |
[23] |
Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003,17(8):1043-1054.
doi: 10.1101/gad.1077503 URL pmid: 12672693 |
[24] |
Dong C H, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc Natl Acad Sci U S A, 2006,103(21):8281-8286.
doi: 10.1073/pnas.0602874103 URL pmid: 16702557 |
[25] |
Miura K, Jin J B, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007,19(4):1403-1414.
doi: 10.1105/tpc.106.048397 URL pmid: 17416732 |
[26] |
Ding Y, Li H, Zhang X, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Dev Cell, 2015,32(3):278-289.
doi: 10.1016/j.devcel.2014.12.023 URL pmid: 25669882 |
[27] |
Li H, Ding Y, Shi Y, et al. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis[J]. Dev Cell, 2017,43(5):630-642.
doi: 10.1016/j.devcel.2017.09.025 URL pmid: 29056553 |
[28] |
Zhao C, Wang P, Si T, et al. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability[J]. Dev Cell, 2017,43(5):618-629.
doi: 10.1016/j.devcel.2017.09.024 URL pmid: 29056551 |
[29] |
Agarwal M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006,281(49):37636-37645.
doi: 10.1074/jbc.M605895200 URL pmid: 17015446 |
[30] |
Doherty C J, Van Buskirk H A, Myers S J, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009,21(3):972-984.
doi: 10.1105/tpc.108.063958 URL pmid: 19270186 |
[31] |
Fursova O V, Pogorelko G V, Tarasov V A. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana[J]. Gene, 2009,429(1-2):98-103.
doi: 10.1016/j.gene.2008.10.016 URL pmid: 19026725 |
[32] | Shi Y, Tian S, Hou L, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[J]. Plant Cell, 2012,24(6):2578-2595. |
[33] |
Vogel J T, Zarka D G, Van Buskirk H A, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. Plant J, 2005,41(2):195-211.
doi: 10.1111/j.1365-313X.2004.02288.x URL pmid: 15634197 |
[34] |
Zhang Z, Li J, Li F, et al. OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance[J]. Dev Cell, 2017,43(6):731-743.
URL pmid: 29257952 |
[35] |
Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation[J]. J Integr Plant Biol, 2018,60(9):745-756.
doi: 10.1111/jipb.12706 URL |
[36] |
Ramirez V E, Poppenberger B. MAP Kinase Signaling Turns to ICE[J]. Dev Cell, 2017,43(5):545-546.
doi: 10.1016/j.devcel.2017.10.032 URL pmid: 29207256 |
[37] |
Choi J Y, Platts A E, Fuller D Q, et al. The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice[J]. Mol Biol Evol, 2017,34(4):969-979.
doi: 10.1093/molbev/msx049 URL pmid: 28087768 |
[38] |
Civan P, Craig H, Cox C J, et al. Three geographically separate domestications of Asian rice[J]. Nat Plants, 2015,1:15164.
doi: 10.1038/nplants.2015.164 URL pmid: 27251535 |
[39] |
Huang X, Kurata N, Wei X, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012,490(7421):497-501.
doi: 10.1038/nature11532 URL pmid: 23034647 |
[40] |
Lu G, Wu F Q, Wu W, et al. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature[J]. Plant J, 2014,78(3):468-480.
doi: 10.1111/tpj.12487 URL pmid: 24635058 |
[41] |
Lv Y, Guo Z, Li X, et al. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis[J]. Plant Cell Environ, 2016,39(3):556-570.
doi: 10.1111/pce.12635 URL pmid: 26381647 |
[42] |
Shakiba E, Edwards J D, Jodari F, et al. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis[J]. PLoS One, 2017,12(3):e0172133.
doi: 10.1371/journal.pone.0172133 URL pmid: 28282385 |
[43] | Wang D, Liu J, Li C, et al. Genome-wide Association Mapping of Cold Tolerance Genes at the Seedling Stage in Rice[J]. Rice (N Y), 2016,9(1):61. |
[44] |
Fujino K, Sekiguchi H, Matsuda Y, et al. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice[J]. Proc Natl Acad Sci USA, 2008,105(34):12623-12628.
doi: 10.1073/pnas.0805303105 URL pmid: 18719107 |
[45] |
Wang X, Zou B, Shao Q, et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. J Exp Bot, 2018,69(3):413-421.
doi: 10.1093/jxb/erx413 URL pmid: 29237030 |
[46] |
Civan P, Brown T A. Role of genetic introgression during the evolution of cultivated rice (Oryza sativa L.)[J]. BMC Evol Biol, 2018,18:57.
doi: 10.1186/s12862-018-1180-7 URL pmid: 29688851 |
[47] |
Wang W, Mauleon R, Hu Z, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018,557(7703):43-49.
URL pmid: 29695866 |
[48] |
Wang P, Yang C, Chen H, et al. Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L.[J]. BMC Plant Biol, 2018,18:202.
doi: 10.1186/s12870-018-1417-z URL pmid: 30231862 |
[49] |
E Z G, Zhang Y P, Zhou J H, et al. Mini review roles of the bZIP gene family in rice[J]. Genet Mol Res, 2014,13(2):3025-3036.
doi: 10.4238/2014.April.16.11 URL |
[50] |
Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci, 2002,7(3):106-111.
doi: 10.1016/s1360-1385(01)02223-3 URL pmid: 11906833 |
[51] | Kawahara Y, de la Bastide M, Hamilton J P, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice (N Y), 2013,6:4. |
[52] |
Nijhawan A, Jain M, Tyagi A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiol, 2008,146(2):333-350.
doi: 10.1104/pp.107.112821 URL pmid: 18065552 |
[53] |
Sornaraj P, Luang S, Lopato S, et al. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function[J]. Biochim Biophys Acta, 2016,1860(1 Pt A):46-56.
doi: 10.1016/j.bbagen.2015.10.014 URL pmid: 26493723 |
[54] |
Liu C, Ou S, Mao B, et al. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nat Commun, 2018,9:3302.
doi: 10.1038/s41467-018-05753-w URL pmid: 30120236 |
[55] |
Zhang Z, Li J, Pan Y, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats[J]. Nat Commun, 2017,8:14788.
doi: 10.1038/ncomms14788 URL pmid: 28332574 |
[1] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[2] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[3] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
[4] | ZHANG Shuangyan, REN Hao, DING Wenqing, WU Yutao. Research Progress on Material Utilization of Agricultural Waste Rice Husk [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 101-108. |
[5] | LI Shaojie, XIAO Qingshan, SONG Fuqiang, WANG Xin. Propagation of Arbuscular Mycorrhizal Fungi: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 115-122. |
[6] | HUANG Yu, CHEN Bin, XIAO Guanli. The Physiological Response of the Local Rice Variety of ‘Acuce’ of Hani Nationality in Yunnan Against the Feeding of Nilaparvata lugens Stål [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 123-129. |
[7] | SHI Yonghai, CAO Xiangde, XU Jiabo. Effect of COVID-19 Epidemic on Alosa sapidissima Production in China and the Countermeasures [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 151-156. |
[8] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[9] | LI Xinghua, WANG Huan, ZHANG Sheng, CAI Xingxing, ZHOU Qiang, ZHOU Nan. Nitrogen Application Rate and Mode: Effects on Yield and Dry Matter Accumulation and Transport After Flowering of Late Indica Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 6-13. |
[10] | YE Pei, LIU Kequn, SHEN Shuanghe, LIU Kaiwen, LIU Zhixiong, DENG Yanjun. Risk Analysis and Regionalization of Heat Damage During Heading and Flowering Stage of Mid-season Rice in Hubei Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 110-117. |
[11] | WANG Yifan, LAO Xiaocan, YU Liping, YE Hailong. Rice Variety ‘Yongyou 15’: The Suitability of Meteorological Conditions for Sowing by Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 106-109. |
[12] | LIU Peng, WU Qiaohua, SHU Huili, ZHOU Liyin, WANG Xiaodong. The Response Mechanism of Camellia oleifera to Stress Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 24-28. |
[13] | LIU Xiaohang, MA Shuqing, ZHAO Jing, QUAN Hujie, DENG Kuicai, CHAI Qingrong. Yield Response of Japonica Rice of Northeast China to Low Temperature in Different Time Periods of Booting Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 91-98. |
[14] | YU Lan, WANG Haoran, ZHANG Ying, XING Hongyun, DING Qi, ZHAO Baozhen, CUI Na. Transcription Factor MYCs Regulating Terpenoids in Tomato Trichomes: Research Progress on Molecular Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 87-93. |
[15] | LI Xuefeng, WANG Jian, YE Xiaoyuan, ZHANG Xiuting, WANG Lixue. Plant Aqueous Extract of Momordica charantia: Effects on Rice Seed Germination and Seedling Growth [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||