Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (33): 112-119.doi: 10.11924/j.issn.1000-6850.casb2021-0563
Previous Articles Next Articles
Wang Xue1,2(), Wang Shenghao1,2, Yu Bing1,2(
)
Received:
2021-05-28
Revised:
2021-07-08
Online:
2021-11-25
Published:
2022-01-06
Contact:
Yu Bing
E-mail:1182716332@qq.com;ybgirl1234@sina.com
CLC Number:
Wang Xue, Wang Shenghao, Yu Bing. Interaction Analysis of Transcription Factors and Promoters and Its Application in Response of Plants to Stress[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0563
逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 |
---|---|---|---|---|---|---|
青枯雷尔氏菌 | 辣椒 Capsicum annuum L. | CaWRKY40 | WRKY | CaC3H14 | W-box | [ |
干旱 | 水稻 Oryza sativa L. | OsSNAC1 | NAC | OsSNAC1TGDs | NACRS、ABRE | [ |
葡萄座腔菌 | 苹果 Malus domestica (Suckow) Borkh. | MdWRKY15 | WRKY | MdICS1 | W-box | [ |
高温 | 核桃 Juglans regia L. | JrGRAS2 | GRAS | JrDof3 | DOFCOREZM | [ |
逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 |
---|---|---|---|---|---|---|
青枯雷尔氏菌 | 辣椒 Capsicum annuum L. | CaWRKY40 | WRKY | CaC3H14 | W-box | [ |
干旱 | 水稻 Oryza sativa L. | OsSNAC1 | NAC | OsSNAC1TGDs | NACRS、ABRE | [ |
葡萄座腔菌 | 苹果 Malus domestica (Suckow) Borkh. | MdWRKY15 | WRKY | MdICS1 | W-box | [ |
高温 | 核桃 Juglans regia L. | JrGRAS2 | GRAS | JrDof3 | DOFCOREZM | [ |
逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 | |
---|---|---|---|---|---|---|---|
大丽轮枝菌 | 棉花 Gossypium hirsutum L. | GhNAC100 | NAC | GhPR3 | CGTA-box | [ | |
霜霉病菌 | 大豆 Glycine max (L.) Merr. | GmWRKY31 | WRKY | GmSAGT1 | W-box | [ | |
冷胁迫 | 虎百合 Lilium lancifolium L. | LlMYB3 | MYB | LlCHS2 | – | [ | |
盐胁迫 | 水稻 Oryza sativa L. | OsPCF2、OsCPP5、OsNIN-like2~4 | TCP、CPP、NIN-like | OsNHX1 | – | [ |
逆境类型 | 物种 | 转录因子 | 转录因子家族 | 靶基因 | 作用元件 | 参考文献 | |
---|---|---|---|---|---|---|---|
大丽轮枝菌 | 棉花 Gossypium hirsutum L. | GhNAC100 | NAC | GhPR3 | CGTA-box | [ | |
霜霉病菌 | 大豆 Glycine max (L.) Merr. | GmWRKY31 | WRKY | GmSAGT1 | W-box | [ | |
冷胁迫 | 虎百合 Lilium lancifolium L. | LlMYB3 | MYB | LlCHS2 | – | [ | |
盐胁迫 | 水稻 Oryza sativa L. | OsPCF2、OsCPP5、OsNIN-like2~4 | TCP、CPP、NIN-like | OsNHX1 | – | [ |
[1] | Aditya B, Aryadeep R. WRKY Proteins: Signaling and regulation of expression during abiotic stress responses[J]. Scientific World Journal, 2015(2015):1-17. |
[2] |
Rodziewicz P, Swarcewicz B, Chmielewska K, et al. Influence of abiotic stresses on plant proteome and metabolome changes[J]. Acta Physiologiae Plantarum, 2014, 36(1):1-19.
doi: 10.1007/s11738-013-1402-y URL |
[3] |
Bari R, Jones J D. Role of plant hormones in plant defence responses[J]. Plant molecular biology, 2009, 69(4):473-488.
doi: 10.1007/s11103-008-9435-0 URL |
[4] |
Wang Y, Xu W, Chen Z, et al. Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis)[J]. Planta, 2018, 247(3):559-572.
doi: 10.1007/s00425-017-2809-2 pmid: 29119268 |
[5] |
Sun T, Wang C, Liu R, et al. ThHSFA1 Confers Salt Stress Tolerance through Modulation of Reactive Oxygen Species Scavenging by Directly Regulating ThWRKY4[J]. International journal of molecular sciences, 2021, 22(9):30-33.
doi: 10.3390/ijms22010030 URL |
[6] |
Wang Y, Mao Z, Jiang H, et al. A feedback loop involving MdMYB108L and MdHY5 controls apple cold tolerance[J]. Biochemical and Biophysical Research Communications, 2019, 512(2):381-386.
doi: 10.1016/j.bbrc.2019.03.101 URL |
[7] | 王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展[J]. 生命科学研究, 2016, 20(4):358-364. |
[8] |
Puranik S, Sahu P, Srivastava P, et al. NAC proteins: regulation and role in stress tolerance[J]. Trends Plant Sci, 2012, 17(6):369-381.
doi: 10.1016/j.tplants.2012.02.004 pmid: 22445067 |
[9] |
Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6):239-47.
doi: 10.1093/dnares/10.6.239 URL |
[10] | 荣欢, 任师杰, 汪梓坪, 等. 植物NAC转录因子的结构及功能研究进展[J]. 江苏农业科学, 2020, 48(18):44-53. |
[11] |
Podzimska D, O'Shea C, Gregersen P, et al. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops[J]. Plants, 2015, 4(3):412-48.
doi: 10.3390/plants4030412 URL |
[12] |
Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300.
doi: 10.1093/mp/sst026 URL |
[13] | Llorca C, Potschin M, Zentgraf U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies[J]. Front Plant Sci, 2014, 5:169. |
[14] | 禹阳, 贾赵东, 马佩勇, 等. WRKY转录因子在植物抗病反应中的功能研究进展[J]. 分子植物育种, 2018, 16(21):7009-7020. |
[15] |
Kolonko M, Greb B. bHLH-PAS Proteins: Their Structure and Intrinsic Disorder[J]. Int J Mol Sci, 2019, 20(15):3653.
doi: 10.3390/ijms20153653 URL |
[16] |
Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress[J]. Biochem Biophys Res Commun, 2018, 503(2):397-401.
doi: 10.1016/j.bbrc.2018.07.123 URL |
[17] | Du J, Zhai L, Guo D. Progress in bHLH transcription factors regulating the response to iron deficiency in plants[J]. Sheng Wu Gong Cheng Xue Bao, 2019, 35(5):766-774. |
[18] | 惠甜, 沈兵琪, 王连春, 等. 桑树bHLH转录因子家族全基因组鉴定与分析[J]. 分子植物育种, 2019, 17(17):5624-5637. |
[19] |
Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level[J]. Mol Plant, 2015, 8(3):378-88.
doi: 10.1016/j.molp.2014.11.022 pmid: 25667003 |
[20] |
Gu C, Guo Z, Hao P P, et al. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm[J]. Bot Stud, 2017, 58(1):6.
doi: 10.1186/s40529-016-0159-1 URL |
[21] |
Xie Z, Nolan T, Jiang H, et al. AP2/ERF Transcription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis[J]. Front Plant Sci, 2019, 10:228.
doi: 10.3389/fpls.2019.00228 URL |
[22] |
Zhang J, Wang Q, Guo Z. Progresses on plant AP2/ERF transcription factors[J]. Yi Chuan, 2012, 34(7):835-47.
doi: 10.3724/SP.J.1005.2012.00835 URL |
[23] | 陈珂, 张君, 刘嘉斐, 等. 绿豆AP2/ERF转录因子家族的生物信息学鉴定与特征分析[J]. 分子植物育种, 2020, 18(20):6605-6617. |
[24] |
Srivastava R, Kumar R. The expanding roles of APETALA2/Ethylene Responsive Factors and their potential applications in crop improvement[J]. Brief Funct Genomics, 2018, 18(4):240-254.
doi: 10.1093/bfgp/elz001 pmid: 30783669 |
[25] |
Seo M, Kim J. Understanding of MYB Transcription Factors Involved in Glucosinolate Biosynjournal in Brassicaceae[J]. Molecules, 2017, 22(9):1549.
doi: 10.3390/molecules22091549 URL |
[26] | Li J, Han G, Sun C, et al. Research advances of MYB transcription factors in plant stress resistance and breeding[J]. Plant Signal Behav, 2019, 14(8): 1613131. |
[27] |
Millard P S, Kragelund B B, Burow M. R2R3 MYB Transcription Factors - Functions outside the DNA-Binding Domain[J]. Trends Plant Sci, 2019, 24(10):934-946.
doi: S1360-1385(19)30166-9 pmid: 31358471 |
[28] |
Ma D, Constabel C. MYB Repressors as Regulators of Phenylpropanoid Metabolism in Plants[J]. Trends Plant Sci, 2019, 24(3):275-289.
doi: 10.1016/j.tplants.2018.12.003 URL |
[29] | 李爽. 转录因子AREB1与组蛋白修饰H3K9ac协同调控毛果杨应答干旱胁迫的机制研究[D]. 哈尔滨:东北林业大学, 2019. |
[30] | Liang K, Wang A, Yuan Y, et al. Picea wilsonii NAC transcription factor PwNAC30 negatively regulates abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Molecular Biology Reporter, 2020, 6:1-18. |
[31] |
Li S, Lin Y, Wang P, et al. The AREB1 Transcription Factor Influences Histone Acetylation to Regulate Drought Responses and Tolerance in Populus trichocarpa[J]. The Plant cell, 2019, 31(3):663-686.
doi: 10.1105/tpc.18.00437 URL |
[32] |
Orlando V, Strutt H, Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking[J]. Methods, 1997, 11:205-214.
pmid: 8993033 |
[33] |
Duband I. Lamin ChIP from chromatin prepared by micrococcal nuclease digestion[J]. Methods Mol Biol, 2016, 1411:325-339.
doi: 10.1007/978-1-4939-3530-7_21 pmid: 27147052 |
[34] | Gade P, Kalvakolanu D. Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity[J]. Methods Mol Biol, 2012, 809:85-104. |
[35] | Kumar N, Mukhopadhyay A. Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters[J]. Methods in molecular biology (Clifton, N.J.), 2019, 1890:115-130. |
[36] | Kim T, Dekker J. ChIP-chip[J]. Cold Spring Harb Protoc, 2018(5). |
[37] | 李敏俐, 王薇, 陆祖宏. ChIP技术及其在基因组水平上分析DNA与蛋白质相互作用[J]. 遗传, 2010, 32(03):219-228. |
[38] | Cortijo S, Charoensawan V, Roudier F, et al. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis[J]. Methods in molecular biology (Clifton, N.J.), 2018, 1761:231-248. |
[39] |
Bhatia S, Matthews J, Wells P G. Characterization of Epigenetic Histone Activation/Repression Marks in Sequences of Genes by Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-qPCR)[J]. Methods Mol Biol, 2019, 1965:389-403.
doi: 10.1007/978-1-4939-9182-2_25 pmid: 31069688 |
[40] |
Guiducci C, Spiga F. Another transistor-based revolution: on-chip qPCR[J]. Nat Methods, 2013, 10(7):617-8.
doi: 10.1126/science.10.252.617.a URL |
[41] |
Galas D, Schmitz A. DNase footprinting: a simple method for the detection of protein-DNA binding specificity[J]. Nucleic Acids Res, 1978, 5:3157-3170.
pmid: 212715 |
[42] | 李圣彦, 郎志宏, 黄大昉. 真核生物启动子研究概述[J]. 生物技术进展, 2014, 4(3):158-164. |
[43] | Leblanc B, Moss T. In Vitro DNase I Footprinting[J]. Methods in molecular biology (Clifton, N.J.), 2015, 1334:17-27. |
[44] | 徐冬冬, 刘德培, 吕湘, 等. 固相DNaseⅠ足迹法研究DNA-蛋白质相互作用[J], 生物化学与生物物理进展, 2001, 28(4):587-589. |
[45] |
Sandaltzopoulos R, Becker P. Solid phase DNase I footprinting: quick and versatile[J]. Nucleic Acids Res, 1994, 22(8):1511-1512.
pmid: 8190649 |
[46] | Unterholzner S, Rozhon W, Poppenberger B. Analysis of In Vitro DNA Interactions of Brassinosteroid-Controlled Transcription Factors Using Electrophoretic Mobility Shift Assay[J]. Methods in molecular biology (Clifton, N.J.), 2017, 1564:133-144. |
[47] | Seo M, Lei L, Egli M. Label-Free Electrophoretic Mobility Shift Assay (EMSA) for Measuring Dissociation Constants of Protein-RNA Complexes[J]. Current protocols in nucleic acid chemistry, 2019, 76(1). |
[48] |
Daras G, Alatzas A, Tsitsekian D, et al. Detection of RNA-protein interactions using a highly sensitive non-radioactive electrophoretic mobility shift assay[J]. Electrophoresis, 2019, 40(9):1365-1371.
doi: 10.1002/elps.v40.9 URL |
[49] | García V, Sanz C. Interactions of DNA and Proteins: Electrophoretic Mobility Shift Assay in Asthma.[J]. Methods in molecular biology (Clifton, N.J.), 2016, 1434:91-105. |
[50] |
Li J, Herskowitz I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system[J]. Science, 1993, 262:1870-1874
pmid: 8266075 |
[51] | 陈峰, 李洁, 张贵友, 等. 酵母单杂交的原理与应用实例[J]. 生物工程进展, 2001(4):57-62. |
[52] | 刘玮, 单雷, 唐桂英, 等. 花生AhbHLH1参与调控FAD2基因在种子中表达的研究[C]. 2015年学术年会论文摘要集, 2015: 49. |
[53] | Kang S, Breton G, Pruneda-Paz J. Construction of Arabidopsis Transcription Factor ORFeome Collections and Identification of Protein-DNA Interactions by High-Throughput Yeast One-Hybrid Screens[J]. Methods in molecular biology (Clifton, N.J.), 2018, 1794:151-182. |
[54] | 廖名湘, 方福德. 酵母单杂交体系——一种研究DNA-蛋白质相互作用的有效方法[J]. 中国医学科学院学报, 2000(4):388-391. |
[55] |
Qiu A, Lei Y, Yang S, et al. CaC3H14 Encoding a Tandem CCCH Zinc Finger Protein Is Directly Targeted by CaWRKY40 and Positively Regulates the Response of Pepper to Inoculation by Ralstonia solanacearum[J]. Molecular Plant Pathology, 2018, 19(10):2221-2235.
doi: 10.1111/mpp.2018.19.issue-10 URL |
[56] |
Li X, Chang Y, Ma S, et al. Genome-Wide Identification of SNAC1-Targeted Genes Involved in Drought Response in Rice[J]. Frontiers in plant science, 2019, 10:982.
doi: 10.3389/fpls.2019.00982 URL |
[57] |
Zhao X, Qi C, Jiang H, et al. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of integrative plant biology, 2020, 62(4):527-543.
doi: 10.1111/jipb.v62.4 URL |
[58] |
Yang G, Gao X, Ma K, et al. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression[J]. BMC plant biology, 2018, 18(1):367.
doi: 10.1186/s12870-018-1568-y URL |
[59] | Shao Y, Yit H, Peter S. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum[J]. Molecular Microbiology, 2018, 109(1). |
[61] |
Grec S, Vanham D, Ribaucourt J, et al. Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes[J]. The Plant journal: for cell and molecular biology, 2003, 35(2):237-250.
doi: 10.1046/j.1365-313X.2003.01792.x URL |
[62] |
Zhang L, Xu Z, Ji H, et al. TaWRKY40 transcription factor positively regulate the expression of TaGAPC1 to enhance drought tolerance[J]. BMC genomics, 2019, 20(1):795.
doi: 10.1186/s12864-019-6178-z pmid: 31666006 |
[63] |
Zheng X, Yang J, Lou T, et al. Transcriptome Profile Analysis Reveals that CsTCP14 Induces Susceptibility to Foliage Diseases in Cucumber[J]. International journal of molecular sciences, 2019, 20(10):2582.
doi: 10.3390/ijms20102582 URL |
[64] |
Zhao X, Qi C, Jiang H, et al. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31[J]. Plant molecular biology, 2019, 101(1-2):149-162.
doi: 10.1007/s11103-019-00898-8 URL |
[65] |
Zhao X, Qi C, Jiang H, et al. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of Integrative Plant Biology, 2020, 62(4):527-543.
doi: 10.1111/jipb.v62.4 URL |
[66] |
Zhang L, Song Z, Li F, et al. The specific MYB binding sites bound by TaMYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat[J]. BMC plant biology, 2019, 19(1):366.
doi: 10.1186/s12870-019-1948-y pmid: 31426752 |
[67] |
Hu G, Lei Y, Liu J, et al. The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia[J]. Plant Science, 2020, 293:110438.
doi: 10.1016/j.plantsci.2020.110438 URL |
[68] |
Dong H, Tan J, Li M, et al. Transcriptome analysis of soybean WRKY TFs in response to Peronospora manshurica infection[J]. Genomics, 2019, 111(6):1412-1422.
doi: 10.1016/j.ygeno.2018.09.014 URL |
[69] |
Yong Y, Zhang Y, Lyu Y. A MYB-Related Transcription Factor from Lilium lancifolium L. (LlMYB3) Is Involved in Anthocyanin Biosynjournal Pathway and Enhances Multiple Abiotic Stress Tolerance in Arabidopsis thaliana[J]. International journal of molecular sciences, 2019, 20(13):3195.
doi: 10.3390/ijms20133195 URL |
[70] |
Almeida D, Gregorio B, Oliveira M, et al. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype[J]. Plant molecular biology, 2017, 93(1-2):61-77.
doi: 10.1007/s11103-016-0547-7 pmid: 27766460 |
[1] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[2] | YU Lan, WANG Haoran, ZHANG Ying, XING Hongyun, DING Qi, ZHAO Baozhen, CUI Na. Transcription Factor MYCs Regulating Terpenoids in Tomato Trichomes: Research Progress on Molecular Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 87-93. |
[3] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. |
[4] | MA Guifang, XIN Haibo, XIU Li, SUN Chaoxia, ZHANG Hua. Buckwheat Seed Shelling Characters: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 19-27. |
[5] | ZHANG Bo, TAN Wei, ZHOU Jie, LI Xiaolin, YE Lei, YANG Xuezhen. Different Particle Sizes of Mulberry Chips Affect Yield and Quality of Ganoderma lucidum During Substitute Cultivation [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 39-43. |
[6] | WANG Dongpeng, YE Cheng, LIAO Xiaoli. Application of Microfluidic Chip in Agricultural Products Safety Detection [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 148-154. |
[7] | Ma Huimin, Sun Peilin, Ma Chunquan. Salt Tolerance Function of Transcription Factor BvM14-GAI [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 34-42. |
[8] | Sun Mingyang, Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua. The Full-length Transcriptome of Kalmegh (Andrographis paniculate): Sequencing and Characterization [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 82-89. |
[9] | Du Xiaoxue, Huang Yuanyuan, Ma Chunquan, Li Haiying. Transcription Factor BvM14-Dof 3.4 in Response to Salt Stress: Functional Study [J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 119-125. |
[10] | Liu Kaiyuan, Wang Maoliang, Xin Haibo, Zhang Hua, Cong Richen, Huang Dazhuang. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51. |
[11] | Li Ying, Du Chunmei. Virulence Factors of Pathogenic Fusarium oxysporum: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 92-97. |
[12] | Tan Jingfa, He Wenchuang, Dong Xilong, Dang Tengfei, Xie Yi, Xi Kun, Sun Yongsheng, Hu Yalin, Jin Deming. DREB2A Gene Resistant to Osmotic Stress in Rice Germplasms: Genetic Diversity Analysis [J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 1-13. |
[13] | Wang Qiong, Guo Yijing, Kang Lin, Zhang Shaoying, Yu Youwei, Song Xiaoqing. Physiological and Biochemical Functions of CO in Plant: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 86-90. |
[14] | Yu bing,,李海英,, and Duanmu Huizi. Research Progress of Plant bHLH Transcription Factor [J]. Chinese Agricultural Science Bulletin, 2019, 35(9): 75-80. |
[15] | . Expression Change of Transcription Factors of Rice Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2019, 35(6): 108-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||