中国农学通报 ›› 2021, Vol. 37 ›› Issue (6): 123-129.doi: 10.11924/j.issn.1000-6850.casb2020-0149
所属专题: 水稻
杨峰山1,2,3(), 杨思源1,2,3, 孙丛1,2,3, 张希1,2,3, 王颜波1,2,3, 付海燕1,2,3, 刘春光1,2,3(
)
收稿日期:
2020-06-03
修回日期:
2020-08-09
出版日期:
2021-02-25
发布日期:
2021-02-24
通讯作者:
刘春光
作者简介:
杨峰山,男,1973年出生,山东文登人,教授,博士,主要从事作物害虫防治和农田土壤修复研究。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学生命科学学院,E-mail:基金资助:
Yang Fengshan1,2,3(), Yang Siyuan1,2,3, Sun Cong1,2,3, Zhang Xi1,2,3, Wang Yanbo1,2,3, Fu Haiyan1,2,3, Liu Chunguang1,2,3(
)
Received:
2020-06-03
Revised:
2020-08-09
Online:
2021-02-25
Published:
2021-02-24
Contact:
Liu Chunguang
摘要:
为了解决水稻田除草剂残留对土壤和后茬敏感作物药害等问题,为污染土壤微生物修复提供理论依据,文章综述了微生物降解除草剂的途径和影响因素、分析了施用二氯喹啉酸、苯噻草胺、磺酰脲类以及二硝基苯胺类除草剂的药害、总结了降解微生物的研究进展和目前研究存在的问题,最后提出了关于微生物修复污染的土壤目前需要解决的问题并对未来微生物修复除草剂污染的土壤研究趋势进行了展望。
中图分类号:
杨峰山, 杨思源, 孙丛, 张希, 王颜波, 付海燕, 刘春光. 水稻田除草剂微生物降解的研究进展[J]. 中国农学通报, 2021, 37(6): 123-129.
Yang Fengshan, Yang Siyuan, Sun Cong, Zhang Xi, Wang Yanbo, Fu Haiyan, Liu Chunguang. Research Progress in Microbial Degradation of Herbicides in Rice Field[J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 123-129.
[1] | Pandey A K. A Review on Microbial Degradation of Organophosphorous Pesticide: Methyl Parathion[J]. Austin Journal of Biotechnology &Bioengineering, 2017,4:1-6. |
[2] | 杨曙辉, 宋天庆, 陈怀军, 等. 现代农业生产方式与技术体系对生态环境的影响[J]. 农业环境与发展, 2010(01):5-11. |
[3] | Shetty P K, Murugan M, Sreeja K G. Crop protection stewardship in India: Wanted or unwanted[J]. Current Science, 2015: 457-464. |
[4] | Chris F. Bioremediation and phytoremediation of pesticide-contaminated sites[J]. Frazar Chris, 2000: 1-55. |
[5] | Grube A, Donaldson D, Kiely T L, et al. Pesticides Industry Sales and Usage: 2006 and 2007 Market Estimates[J]. Environmental Protection Agency, 2011: 1-41. |
[6] |
Hicks H L, Comont D, Coutts S R, et al. The factors driving evolved herbicide resistance at a national scale[J]. Nature Ecology & Evolution, 2018: 529-536.
doi: 10.1038/s41559-018-0470-1 URL pmid: 29434350 |
[7] |
Lupwayi N Z, Brandt S A, Harker K N, et al. Contrasting soil microbial responses to fertilizers and herbicides in a canola-barley rotation[J]. Soil Biology & Biochemistry, 2010,42(11):1997-2004.
doi: 10.1016/j.soilbio.2010.07.024 URL |
[8] | 马慧媛. 微生物菌剂施用对设施茄子根际土壤养分和细菌群落多样性的影响[J]. 微生物学通报, 2020,47(1):140-150. |
[9] | 褚翠伟, 阮志勇, 姚利, 等. 除草剂的微生物降解研究进展[J]. 生物资源, 2018,040(002):P.93-100. |
[10] | 马吉平. 氯嘧磺隆降解菌的降解特性和应用研究[D]. 南京:南京农业大学, 2010. |
[11] | 吴奇, 宋福强. 土壤中阿特拉津生物降解的研究进展[J]. 土壤与作物, 2017,6(02):153-160. |
[12] | 卢美名, 尹雯悦, 刘传龙, 等. 除草剂微生物降解的研究进展[J]. 湖北农业科学, 2019,58(03):5-8. |
[13] | 赵炎, 陈晨, 韩亮, 等. 微生物降解磺隆类除草剂的研究进展[J]. 湖北农业科学, 2017,56(23):4443-4446. |
[14] | García-Jaramillo M, Trippe K M, Helmus R, et al. An examination of the role of biochar and biochar water-extractable substances on the sorption of ionizable herbicides in rice paddy soils[J]. Science of the Total Environment, 2020,706:135682. |
[15] | 李淑彬, 刘玉焕. 有机磷农药的微生物降解[J]. 中山大学研究生学刊:自然科学版, 1997. |
[16] | 庄绪亮. 土壤复合污染的联合修复技术研究进展[J]. 生态学报, 2007(11):4871-4876. |
[17] | Hill I R, Wright S J L, 杨慧心. 微生物对农药的作用[J]. 农药译丛, 1981(3):17-24. |
[18] | 王乃亮, 杜斌. 微生物对环境中农药的降解作用[J]. 甘肃科技, 2010,26(21):93-95. |
[19] | Yoshitaka I, Noriyuki S, Fujio S, et al. Development and validation of a simulation method, PeCHREM, for evaluating spatio-temporal concentration changes of paddy herbicides in rivers[J]. Environmental science. Processes & impacts, 2018,20(1):120-132. |
[20] | Fujii S, Omura M, Sugahara S, et al. Effect of Herbicides in Paddy Runoff on Seed Germination of Vallisneria asiatica and Ammannia multiflora[J]. Aquatic Science and Technology, 2017,5(1):1-12. |
[21] | 王新, 孙诗雨, 张惠文. 微生物降解磺酰脲类除草剂的研究进展[J]. 生态学杂志, 2018,37(11):274-282. |
[22] | McElroy J S, Martins D. Use of herbicides on turfgrass Uso de herbicidas em gramados[J]. planta daninha, 2013,31(2):455-467. |
[23] |
Grossmann K, Schmülling T. The effects of the herbicide quinclorac on shoot growth in tomato is alleviated by inhibitors of ethylene biosynjournal and by the presence of an antisense construct to the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene in transgenic plants[J]. Plant Growth Regulation, 1995,16(2):183-188.
doi: 10.1007/BF00029539 URL |
[24] | Pan H, Xiaolu L I, Xiaohua X U, et al. Phytotoxicity of four herbicides on Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii[J]. Journal of Environmental Sciences, 2009(03):37-42. |
[25] | Lym R G. Effect of Temperature and Moisture on Quinclorac Soil Half-life and Resulting Native Forb Establishment[J]. Invasive Plant Science and Management, 2016:IPSM-D-16-00031.1. |
[26] |
Pareja L, Perez-Parada A, Agtiera A, et al. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: Identification of transformation products and pathways[J]. Chemosphere, 2012,87(8):838-844.
doi: 10.1016/j.chemosphere.2012.01.016 URL |
[27] |
Pinna M V, Pusino A. Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems[J]. Chemosphere, 2012,86(6):655-658.
doi: 10.1016/j.chemosphere.2011.11.016 URL |
[28] | 罗坤. 除草剂二氯喹啉酸污染及其降解菌筛选方法研究进展[C]. 农田杂草与防控:中国植物保护学会杂草学分会, 2011: 400-403. |
[29] |
Singh D K. Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments[J]. Indian Journal of Microbiology, 2008,48(1):35-40.
doi: 10.1007/s12088-008-0004-7 URL |
[30] | Lü Z M, Min H, Wu S, et al. Phylogenetic and Degradation Characterization of Burkholderia cepacia WZ1 Degrading Herbicide Quinclorac[J]. Journal of Environmental Science & Health Part B, 2003,38(6):771-782. |
[31] |
Lü Z M, Li Z M, Sang L Y, et al. Characterization of a Strain Capable of Degrading a Herbicide Mixture of Quinclorac and Bensulfuronmethyl[J]. Pedosphere, 2008,18(5):554-563.
doi: 10.1016/S1002-0160(08)60049-1 URL |
[32] | Lü Z M, Min H, Li N, et al. Variations of Bacterial Community Structure in Flooded Paddy Soil Contaminated with Herbicide Quinclorac[J]. Journal of Environmental Science and Health, Part B, 2006,41:21-832. |
[33] | Xu S X, Jie Z, Ning H, et al. On the way of isolating,identifying and characterization of quinclorac-degrading bacterium HN36[J]. journal of safety and environment, 2012,2:011. |
[34] | Dong J, Luo K, Bai L, et al. Isolation, identification and characterization of an Alcaligenes strain capable of degrading quinclorac[J]. Chinese Journal of Pesticide Science, 2013: 316-322. |
[35] | 范俊, 柏连阳, 刘敏捷, 等. 1株二氯喹啉酸降解菌QC06的筛选鉴定及其降解特性[J]. 中国生物防治学报, 2013,029(003):431-436. |
[36] |
Liu M, Luo K, Wang Y S, et al. Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3[J]. PLoS ONE, 2014.
doi: 10.1371/journal.pone.0247685 URL pmid: 33621250 |
[37] | Li Y Y, Chen W, Wang Y S, et al. Identifying and sequencing a Mycobacterium sp. strain F4 as a potential bioremediation agent for quinclorac[J]. LoS ONE, 2017. |
[38] | 林胜, 周挺, 张玥, 等. 二氯喹啉酸降解菌嗜麦芽寡养单胞菌菌株J03生长特性及其对烟草和水稻的安全性[J]. 农药学学报, 2020,22(01):138-144. |
[39] |
Upedra K, Sonalika B, Sanjay S, et al. Non-target effect of bispyribac sodium on soil microbial community in paddy soil[J]. Ecotoxicology and Environmental Safety, 2020,189:110019.
doi: 10.1016/j.ecoenv.2019.110019 URL pmid: 31816497 |
[40] | 杜宇峰, 叶央芳. 除草剂苯噻草胺对水稻田土壤微生物种群的影响[J]. 应用与环境生物学报, 2005(6):747-750. |
[41] | 叶央芳, 闵航, 杜宇峰, 等. 除草剂苯噻草胺污染对多食鞘氨醇杆菌(Sphingobacterium multivolum)抗氧化酶和ATP酶的影响[J]. 环境科学学报, 2004,024:1110-1115. |
[42] | 叶央芳, 杜宇峰. 三株寡养单胞菌对苯噻草胺的降解及系统发育分析[J]. 江苏环境科技, 2005(04):8-10. |
[43] | 郭建国. 高效环保磺酰脲类除草剂应用评析[J]. 农药市场信息, 2018(029):6-9. |
[44] | 刘金胜, 胡钧. 磺酰脲类除草剂与杂草对其抗性的研究进展[J]. 杂草科学, 2006(4):1-3. |
[45] | 程慕如, 孙致远. 三种磺酰脲类除草剂的光解和水解作用[J]. 植物保护学报, 2000,027(001):93. |
[46] | 李影, 付颖, 叶非. 微生物降解磺酰脲类除草剂的研究进展[J]. 农药科学与管理, 2013(02):27-31. |
[47] | 吴慧明, 刘少颖, 王蒙岑. 土壤和水中磺酰脲类除草剂多残留分析方法的研究[ C]// 全国农药交流会, 2008. |
[48] | 关靓, 赵敏. 氯嘧磺隆高效降解菌的分离、鉴定及其降解特性[J]. 东北林业大学学报, 2009(06):79-81. |
[49] |
Pan X, Wang S G, Shi N, et al. Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1[J]. Ecotoxicology and Environmental Safety, 2018,150:34-39.
doi: 10.1016/j.ecoenv.2017.12.023 URL pmid: 29268112 |
[50] | Li C Y, Zang H L, Yu Q, et al. Biodegradation of chlorimuron-ethyl and the associated degradation pathway by Rhodococcus sp. D310-1[J]. Environmental ence & Pollution Research, 2015,23:1-12. |
[51] | 刘艳, 范丽薇, 王晓萍. 氯嘧磺隆降解菌L-6的分离鉴定及其降解特性[J]. 中国农学通报, 2010,26(019):339-343. |
[52] | 杨峰山, 张瑞, 肖延臣, 等. 一株氯嘧磺隆降解菌分离鉴定及降解条件优化[J]. 生物工程学报, 2020,36(03):560-568. |
[53] |
Ji-Ping M, Zhe W, Peng L, et al. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3[J]. FEMS Microbiology Letters, 2009,296(2):203-9.
doi: 10.1111/j.1574-6968.2009.01638.x URL pmid: 19459953 |
[54] | Zhang J J, Chen Y F, Fang T, et al. Co-metabolic degradation of tribenuron methyl, a sulfonylurea herbicide, by Pseudomonas sp. strain NyZ42[J]. International Biodeterioration & Biodegradation, 2013,76(Sp. Iss. SI):36-40. |
[55] |
Zang H L, Yu Q, Lv T Y, et al. Insights into the degradation of chlorimuron-ethyl by Stenotrophomonas maltophilia D310-3[J]. Chemosphere, 2016,144:176-184.
doi: 10.1016/j.chemosphere.2015.08.073 URL pmid: 26363318 |
[56] |
Li C Y, Zang H L, Yu Q, et al. Biodegradation of chlorimuron-ethyl and the associated degradation pathway by Rhodococcus sp. D310-1[J]. Environmental Science & Pollution Research, 2016,23(9):8794-8805.
doi: 10.1007/s11356-015-5976-3 URL pmid: 26810662 |
[57] | Zhang X L, Zhang H W, Li X, et al. Isolation and characterization of Sporobolomyces sp. LF1 capable of degrading chlorimuron-ethyl[J]. Journal of Environmental Science, 2009,21(9):1253-1260. |
[58] | Zhang H, Mu W, Hou Z, et al. Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80[J]. Journal of Environmental Science & Health.part.b Pesticides Food Contaminants & Agricultural Wastes, 2012,47(3):153-160. |
[59] | 滕春红, 陶波. 氯嘧磺隆高效降解真菌F8的分离和鉴定[J]. 土壤通报, 2008,039(005):1160-1163. |
[60] | 邹月利, 陶波. 氯嘧磺隆高效降解菌株黑曲霉( TR-H)最佳降解条件的研究[J]. 植物保护, 2012(06):92-95. |
[61] | 张建莹, 靳保辉, 吴卫东, 等. 超高效液相色谱-串联质谱法测定菠菜、苹果及大豆中二硝基苯胺类除草剂残留量[J]. 质谱学报, 2018(1):69-75. |
[62] | 张福远. 农田高效除草剂——田普[J]. 科技致富向导, 2013(31):31-31. |
[63] | Ford D H, Massey G D. Characteristics of the substituted dinitroaniline herbicides, Treflan, Balan, Paarlan, and EL-119[C]// 1971. |
[64] | 杜柳涛, 邬惠琼, 杨杏芬. 氟乐灵对大鼠肝、肾微粒体酶的影响[J]. 中国职业医学, 2000,027(005):16. |
[65] | 曹敏, 何健, 倪海燕. 二硝基苯胺类除草剂微生物降解研究进展[J]. 微生物学通报, 2020,47(1):282-294. |
[66] | 朱鲁生, 林爱军, 王军, 等. 二甲戊乐灵降解细菌的分离及降解特性[J]. 环境科学, 2005(01):147-151. |
[67] | 曹敏, 何健, 倪海燕. 二硝基苯胺类除草剂微生物降解研究进展[J]. 微生物学通报, 2020,47(1):282-294. |
[68] | 陈青, 王红妹, 李晓红, 等. 氯乙酰胺类除草剂微生物降解研究进展[J]. 应用与环境生物学报, 2019,25(05):1252-1260. |
[1] | 吴松, 周甜, 杨立宾, 江云兵, 潘虹, 刘永志, 杜君. 基于VOSviewer的叶际微生物研究现状可视化分析[J]. 中国农学通报, 2023, 39(1): 142-150. |
[2] | 殷婷婷, 李志慧, 苏佳贺, 吴世迪, 徐红岩, 贺帅, 刘培, 李相前. 生物法制备纳米硒的研究进展和应用前景[J]. 中国农学通报, 2022, 38(8): 33-41. |
[3] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[4] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[5] | 曹秋梅, 王路义, 李晓曼, 李俊达, 刘梦田, 郑瑶, 王利华. 有效微生物对BALB/C小鼠生长性能、养分消化率和粪便氨气排放量的影响[J]. 中国农学通报, 2022, 38(7): 124-128. |
[6] | 刘颖, 耿丹丹, 韩永胜, 魏敏, 刘柳. 环保型农林保水剂研制、性能与应用[J]. 中国农学通报, 2022, 38(7): 86-90. |
[7] | 陈瑞英, 赵培荣, 刘宏金, 张雷, 郭晓宇. 可降解地膜在马铃薯上的应用效果研究[J]. 中国农学通报, 2022, 38(6): 37-41. |
[8] | 李祥, 王永平, 王耀凤, 褚春年, 孙喜军, 柯希恒, 曾桥. 枝条有机肥最佳堆肥参数及施用效果研究[J]. 中国农学通报, 2022, 38(6): 63-68. |
[9] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[10] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. |
[11] | 马彪, 刘学录, 年丽丽, 李亮亮, 杨莹博. 2011—2020年土壤修复领域研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(5): 143-151. |
[12] | 韩晓芳, 田晓明, 杨永利, 张敬智, 张清, 张凯, 张涛, 贾林. 2种土壤复合改良剂对滨海盐渍土的改良及肥力作用[J]. 中国农学通报, 2022, 38(5): 54-59. |
[13] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. |
[14] | 张晓晴, 李雅, 魏珊, 任大军, 张淑琴. 基于CiteSpace土壤重金属污染防治的知识图谱研究[J]. 中国农学通报, 2022, 38(4): 133-143. |
[15] | 王盛昊, 于冰. 甜菜M14品系BvM14-UNG基因克隆及生物信息学分析[J]. 中国农学通报, 2022, 38(4): 16-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||