中国农学通报 ›› 2022, Vol. 38 ›› Issue (2): 1-6.doi: 10.11924/j.issn.1000-6850.casb2021-0421
• 农学·农业基础科学 • 下一篇
收稿日期:
2021-04-19
修回日期:
2021-06-18
出版日期:
2022-01-15
发布日期:
2022-02-25
通讯作者:
王宇光
作者简介:
崔汝菲,女,1997年出生,河南安阳人,在读研究生,研究方向:植物资源利用。通信地址:150080 黑龙江省哈尔滨市学府路74号 黑龙江大学现代农业与生态环境学院,E-mail: 基金资助:
CUI Rufei(), LI Tai, WANG Yuguang(
)
Received:
2021-04-19
Revised:
2021-06-18
Online:
2022-01-15
Published:
2022-02-25
Contact:
WANG Yuguang
摘要:
为揭示甜菜连作模式下的土壤微生物响应机制,本研究分析了甜菜连作下土壤微生物群落区系和根际微生态研究进展,初步探讨连作甜菜土壤微生物群落变化的演变规律,着重阐述土壤微生物与根际微生态在连作条件下的作用机制,并对未来的研究方向做出展望。指出连作条件下甜菜与微生物互作是一个复杂的过程,其受多重因素共同作用,与根际微生态环境密切相关。受重茬影响,甜菜根际微生态环境由细菌型转化为真菌型,严重制约了甜菜的生长发育和产质量,造成经济损失。建议在今后的研究中,着力于研究根际微生物与土壤微生态对连作甜菜的影响,利用分子生物学技术综合分析,探索造成甜菜连作障碍机制,从而研发新型微生物菌剂和土壤改良剂,为今后甜菜种植产业提供行之有效的改良方案。
中图分类号:
崔汝菲, 李泰, 王宇光. 连作模式下甜菜土壤微生物研究进展[J]. 中国农学通报, 2022, 38(2): 1-6.
CUI Rufei, LI Tai, WANG Yuguang. Sugar Beet Soil Microorganisms Under Continuous Cropping Mode: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 1-6.
[1] |
WANG M, WU C, CHENG Z, et al. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping[J]. Plos one, 2014, 9(10):e111040.
doi: 10.1371/journal.pone.0111040 URL |
[2] | 吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视[J]. 中国生态农业学报, 2020, 28(6):775-793. |
[3] | 马金骏, 江解增, 曾晓萍, 等. 设施茄子连作障碍防控研究[J]. 长江蔬菜, 2020(12):27-30. |
[4] | 胡元森, 吴坤, 李翠香, 等. 酚酸物质对黄瓜幼苗及枯萎病菌菌丝生长的影响[J]. 生态学杂志, 2007, 172(11):1738-1742. |
[5] | 赵尊练, 史联联, 阎玉让, 等. 克服线辣椒连作障碍的施肥方案研究[J]. 干旱地区农业研究, 2006(5):77-80,114. |
[6] | 李森, 姚钦, 刘俊杰, 等. 大豆重迎茬研究进展[J]. 大豆科学, 2020, 39(2):317-324. |
[7] | 刘建国, 张伟, 李彦斌, 等. 新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J]. 中国农业科学, 2009, 42(2):725-733. |
[8] | 焦坤, 陈明娜, 潘丽娟, 等. 长期连作对不同花生品种生长发育、产量与品质的影响[J]. 中国农学通报, 2015, 31(15):44-51. |
[9] | 喻敏, 余均沃, 曹培根, 等. 百合连作土壤养分及物理性状分析[J]. 土壤通报, 2004(3):377-379. |
[10] |
YASIR A, MUHAMMAD T, SHENG L, et al. Long-Term Monoculture Negatively Regulates Fungal Community Composition and Abundance of Tea Orchards[J]. Agronomy, 2019, 9(8):466.
doi: 10.3390/agronomy9080466 URL |
[11] | 马媛媛, 李玉龙, 来航线, 等. 连作番茄根区病土对番茄生长及土壤线虫与微生物的影响[J]. 中国生态农业学报, 2017, 25(5):730-739. |
[12] | GENG G, LV C, STEVANATO P, et al. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet[J]. Int J Mol Sci, 2019(23):5910. |
[13] |
GUI G, JI Y. Sugar Beet Production and Industry in China[J]. Sugar tech, 2015, 17(1):13-21.
doi: 10.1007/s12355-014-0353-y URL |
[14] | 魏良民, 冯建忠. 连作对甜菜生长和块根产量及含糖的影响[J]. 中国糖料, 1999(3):20-22. |
[15] | 孙文庆, 康亚龙, 刘建国, 等. 加工番茄连作对土壤微生物群落多样性的影响[J]. 西北农业学报, 2017, 26(7):1099-1110. |
[16] | 乔蓬蕾, 吴凤芝, 周新刚. 连作对作物根际土壤微生物菌群及酶活性影响[J]. 沈阳农业大学学报, 2013, 44(5):524-530. |
[17] | HUANG L, SONG L, XIA X, et al. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture.[J]. J chem ecol, 2013(2):42-232. |
[18] | 马琳. 土壤微生物多样性影响因素及研究方法综述[J]. 乡村科技, 2019(33):112-113. |
[19] |
SHUAIMIN C, TATOBA R WAGHMODE, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7(4):136.
doi: 10.1186/s40168-019-0750-2 URL |
[20] | SUN L, GAO J, HUANG T, et al. Parental material and cultivation determine soil bacterial community structure and fertility[J]. FEMS microbiol ecol, 2014(1):1-10. |
[21] | 保丽美, 丁亚芳, 魏云林, 等. 三七连作与休闲土壤真菌群落组成与多样性分析[J]. 中药材, 2021(1):7-12. |
[22] |
EVGENIA B, YAKOV K. Active microorganisms in soil: Critical review of estimation criteria and approaches[J]. Soil biology and biochemistry, 2013, 67:192-211.
doi: 10.1016/j.soilbio.2013.08.024 URL |
[23] |
SYRIE M, HERMANS, HANNAH L, et al. Using soil bacterial communities to predict physico-chemical variables and soil quality[J]. Microbiome, 2020, 8(1):79.
doi: 10.1186/s40168-020-00858-1 URL |
[24] |
KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1):75-86.
doi: 10.1007/BF02183056 URL |
[25] | Okazaki K T, Hirohito H, Megumi T, et al. Community Analysis-based Screening of Plant Growth-promoting Bacteria for Sugar Beet[J]. Microbes and environments, 2021, 36(2). |
[26] | 李艳春, 陈志鹏, 林伟伟, 等. 茶树连作障碍形成机制及调控措施研究进展[J]. 生态科学, 2019, 38(5):225-232. |
[27] | 刘来. 连作土壤酸化及改良对土壤性状和辣椒生理代谢的影响[D]. 南京:南京农业大学, 2013. |
[28] | Yasushi H, Munehiro N, Mitsuki T, et al. Analysis of Soil Fungal Community Structure on the Surface of Buried Polyethylene Terephthalate[J]. Journal of polymers and the environment, 2020:1-13. |
[29] | 袁龙刚, 张军林, 张朝阳, 等. 连作对辣椒根际土壤微生物区系影响的初步研究[J]. 陕西农业科学, 2006(2):49-50. |
[30] | 胡元森, 刘亚峰, 吴坤, 等. 黄瓜连作土壤微生物区系变化研究[J]. 土壤通报, 2006(1):126-129. |
[31] | 孙秀山, 封海胜, 万书波, 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J]. 作物学报, 2001(5):617-621. |
[32] | 林生, 庄家强, 陈婷, 等. 不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析[J]. 生态学杂志, 2013, 32(1):64-71. |
[33] |
HUANG W, SUN D, FU J, et al. Effects of Continuous Sugar Beet Cropping on Rhizospheric Microbial Communities[J]. Genes (Basel), 2019, 11(1):13.
doi: 10.3390/genes11010013 URL |
[34] |
JACQUELINE M, CHAPARRO. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and fertility of soils, 2012, 48(5):489-499.
doi: 10.1007/s00374-012-0691-4 URL |
[35] |
ETESAMI H, BEATTIE G A. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops[J]. Frontiers in microbiology, 2018, 9:148.
doi: 10.3389/fmicb.2018.00148 URL |
[36] |
SantOyo G, OROZCO-MOSQUEDA M, GOVINDAPPA M. Mechanisms of bio- control and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review[J]. Biocontrol science and technology, 2012, 22(8):855-872
doi: 10.1080/09583157.2012.694413 URL |
[37] | BUTTIMER C, MCAULIFFE O, ROSS R P, et al. Bacteriophages and Bacterial Plant Diseases[J]. Frontiers in microbiology, 2017, 8:34. |
[38] | COMPANT S, ClÉMent C, SESSITSCH A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization[J]. Soil biology and biochemistry, 2009, 42(5):669-678. |
[39] |
MARK G, MAXWELL D, HAZEL H, et al. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions[J]. Proceedings of the national academy of sciences, 2005: 102(48):17454-17459
doi: 10.1073/pnas.0506407102 URL |
[40] | MENDES R, KRUIJT M, BRUIJN I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria.[J]. Science, 2011(6033):100-1097. |
[41] |
CHEN S, QI G, LUO T, et al. Continuous-cropping Tobacco Caused Variance of Chemical Properties and Structure of Bacterial Network in Soils[J]. Land degradation & development, 2018, 29(11):4106-4120.
doi: 10.1002/ldr.3167 URL |
[42] | MINGNA C, HU L, SHANLIN Y, et al. Long-term Continuously Monocropped Peanut Significantly Changed the Abundance and Composition of Soil Bacterial communities[J]. Peerj, 2020, 8. |
[43] | 张子龙, 王文全. 植物连作障碍的形成机制及其调控技术研究进展[J]. 生物学杂志, 2010, 27(5):69-72. |
[44] | 周煜杰, 贾夏, 赵永华, 等. 森林生态系统土壤真菌群落及其影响因素研究进展[J]. 生态环境学报, 2020, 29(8):1703-1712. |
[45] | CHAPELLE E, MENDES R, BAKKER P, et al. Fungal invasion of the rhizosphere microbiome[J]. The isme journal. 2015(1):8-265. |
[46] | 侯慧, 董坤, 杨智仙, 等. 连作障碍发生机理研究进展[J]. 土壤, 2016, 48(6):1068-1076. |
[47] | 顾松松, 熊兴耀, 谭琳, 等. 土壤微生态与马铃薯连作障碍机制的研究进展[J]. 中国农学通报, 2018, 34(30):42-45. |
[48] |
MAZZOLA M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in washington[J]. Phytopathology, 1998, 88(9):930-938.
doi: 10.1094/PHYTO.1998.88.9.930 URL |
[49] |
JUNJIE L, QIN Y, YANSHENG L, et al. Continuous cropping of soybean alters the bulk and rhizospheric soil fungal communities in a Mollisol of Northeast PR China[J]. Land degradation & development, 2019, 30(14):1725-1738.
doi: 10.1002/ldr.v30.14 URL |
[50] | 陈宏宇, 李晓鸣, 王敬国. 抗病性不同大豆品种根面及根际微生物区系的变化Ⅱ.连作大豆(重茬)根面及根际微生物区系的变化[J]. 植物营养与肥料学报, 2006(1):104-108. |
[51] | 魏丹丽. 三七根腐病绿色防治技术体系研发[D]. 昆明:云南农业大学, 2017. |
[52] |
SHI G, SUN H, CALDERón U, et al. Soil Fungal Diversity Loss and Appearance of Specific Fungal Pathogenic Communities Associated With the Consecutive Replant Problem (CRP) in Lily[J]. Frontiers in microbiology, 2020, 11:1649-1649.
doi: 10.3389/fmicb.2020.01649 URL |
[53] | DONALD S H D. The Sugar Beet Crop: Science into Practice[J]. The journal of agricultural science, 1994, 122(2):327-327. |
[54] | 滕应, 任文杰, 李振高, 等. 花生连作障碍发生机理研究进展[J]. 土壤, 2015, 47(2):259-265. |
[55] | BAKKER P, BERENDSEN R, DOORNBOS R, et al. The rhizosphere revisited: root microbiomics[J]. Front plant Sci, 2013: 165. |
[56] | 耿贵, 刘钰, 李任任, 等. 甜菜连作土壤对甜菜幼苗生长影响及其化感物质成分分析[J]. 中国农学通报, 2021, 37(1):15-20. |
[57] |
MARK M. Apple Replant Disease: Role of Microbial Ecology in Cause and Control[J]. Annual review of phytopathology, 2012, 50:45-65.
doi: 10.1146/phyto.2012.50.issue-1 URL |
[58] |
敖金成, 李博, 闫凯, 等. 连作对云南典型烟区植烟土壤细菌群落多样性的影响[J/OL]. 农业资源与环境学报:1-19[2022-01-04].DOI: 10.13254/j.jare.2020.0721.
doi: 10.13254/j.jare.2020.0721 |
[59] | APARICIO V, COSTA J. Soil Quality Indicators Under Continuous Cropping Systems in the Argentinean Pampas[J]. Soil & tillage research, 2007, 96(1):155-165. |
[60] |
YU Y, YANG J, ZENG S, et al. Soil Ph, Organic Matter, and Nutrient Content Change with the Continuous Cropping of Cunninghamia Lanceolata Plantations in South China[J]. Journal of soils and sediments, 2017, 17(9):2230-2238.
doi: 10.1007/s11368-016-1472-8 URL |
[61] |
GIL S V, MERILES J, CONFORTO C, et al. Response of Soil Microbial Communities to Different Management Practices in Surface Soils of a Soybean Agroecosystem in Argentina[J]. European journal of soil biology, 2010, 47(1):55-60.
doi: 10.1016/j.ejsobi.2010.11.006 URL |
[62] | CHEN P, WANG Y, LIU Q, et al. Phase Changes of Continuous Cropping Obstacles in Strawberry ( Fragaria × Ananassa Duch.) Production[J]. Applied soil ecology, 2020: 155. |
[63] | JASON A, PEIFFER A, OMRY K, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(16):6548-6553. |
[64] | MEENA R, VIJAYAKUMAR V, YADAV G, et al. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere[J]. Plant growth regulation, 2018, 84(2):207-223. |
[65] | BAIS H, WEIR T, PERRY L, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu rev plant Biol, 2006: 66-233. |
[66] | 董晓民, 高晓兰, 刘伟, 等. 桃连作障碍中自毒作用的研究进展[J]. 黑龙江农业科学, 2021, 320(2):123-127. |
[67] |
LIU Z, LIU J, YU Z, et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition[J]. Soil and tillage research, 2020, 197(C):104503.
doi: 10.1016/j.still.2019.104503 URL |
[68] |
TAN Y, CUI Y, LI H, et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research, 2017, 194:10-19.
doi: 10.1016/j.micres.2016.09.009 URL |
[69] |
XIONG W, ZHAO Q, ZHAO J, et al. Different Continuous Cropping Spans Significantly Affect Microbial Community Membership and Structure in a Vanilla-Grown Soil as Revealed by Deep Pyrosequencing[J]. Microbial ecology, 2015, 70(1):209-218.
doi: 10.1007/s00248-014-0516-0 URL |
[70] |
ZENG J, LIU J, LU C, et al. Intercropping With Turmeric or Ginger Reduce the Continuous Cropping Obstacles That Affect Pogostemon cablin (Patchouli)[J]. Frontiers in microbiology, 2020, 11:579719-579719.
doi: 10.3389/fmicb.2020.579719 URL |
[71] | 谢奎忠, 邱慧珍, 胡新元, 等. 连作马铃薯根系分泌物鉴定及其对尖孢镰孢菌(Fusarium oxysporum)的作用[J]. 中国沙漠, 2021(3):1-9. |
[72] | WU L, CHEN J, WU H, et al. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing[J]. Scientific reports, 2016, 6(1):1693-1699. |
[73] |
Bai Y X, WANG G, CHENG Y D, et al. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids[J]. Scientific reports, 2019, 9(1):653-662.
doi: 10.1038/s41598-018-37441-6 URL |
[74] | MILLER H G, IKAWA M, PEIRCE L C. Caffeic acid identified as an inhibitory compound in asparagus root filtrate[J]. Horticultural science, 1991, 26(12):1525-1527. |
[75] | 沈谦, 王进军. 土壤连作障碍发生的原因及其调控研究进展[J]. 乡村科技, 2019, 217(13):111-113. |
[1] | 吴松, 周甜, 杨立宾, 江云兵, 潘虹, 刘永志, 杜君. 基于VOSviewer的叶际微生物研究现状可视化分析[J]. 中国农学通报, 2023, 39(1): 142-150. |
[2] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[3] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[4] | 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析[J]. 中国农学通报, 2022, 38(8): 17-24. |
[5] | 殷婷婷, 李志慧, 苏佳贺, 吴世迪, 徐红岩, 贺帅, 刘培, 李相前. 生物法制备纳米硒的研究进展和应用前景[J]. 中国农学通报, 2022, 38(8): 33-41. |
[6] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. |
[7] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[8] | 王琳玉, 蒋依辰, 于清洋, 吴则东, 邳植. 甜菜组蛋白去乙酰化酶(HDACs)基因家族鉴定及功能预测[J]. 中国农学通报, 2022, 38(8): 9-16. |
[9] | 曹秋梅, 王路义, 李晓曼, 李俊达, 刘梦田, 郑瑶, 王利华. 有效微生物对BALB/C小鼠生长性能、养分消化率和粪便氨气排放量的影响[J]. 中国农学通报, 2022, 38(7): 124-128. |
[10] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[11] | 李祥, 王永平, 王耀凤, 褚春年, 孙喜军, 柯希恒, 曾桥. 枝条有机肥最佳堆肥参数及施用效果研究[J]. 中国农学通报, 2022, 38(6): 63-68. |
[12] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. |
[13] | 韩晓芳, 田晓明, 杨永利, 张敬智, 张清, 张凯, 张涛, 贾林. 2种土壤复合改良剂对滨海盐渍土的改良及肥力作用[J]. 中国农学通报, 2022, 38(5): 54-59. |
[14] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. |
[15] | 王盛昊, 于冰. 甜菜M14品系BvM14-UNG基因克隆及生物信息学分析[J]. 中国农学通报, 2022, 38(4): 16-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||