[1] |
GOLD M, TOMBERLIN J K, DIENER S, et al. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review[J]. Waste management, 2018, 82:302-318.
doi: S0956-053X(18)30640-8
pmid: 30509593
|
[2] |
何纪垲, 卢秋咏, 邹新华, 等. 黑水虻对畜禽粪便的转化以及在饲料中的应用进展[J]. 国外畜牧学(猪与禽), 2023, 43(2):92-96.
|
[3] |
贾友刚, 安沙, 李星晨, 等. 黑水虻幼虫粉替代豆粕对肉鸡生长性能、屠宰性能、肉品质和肠道健康的影响[J]. 中国畜牧杂志, 2024, 60(6):253-258.
|
[4] |
曾静, 乔雄梧. 我国近年蔬菜水果中农药残留超标状况浅析[J]. 农药学学报, 2023, 25(6):1206-1221.
|
[5] |
祝愿, 李俊, 赖飞, 等. 农产品中农药残留快速检测技术研究进展[J]. 现代食品, 2023, 29(11):85-89.
|
[6] |
张丽. 农产品中有机氯农药残留超标危害与检测技术[J]. 食品安全导刊, 2020(30):149.
|
[7] |
李元喜, 刘树生, 刘银泉. 氰戊菊酯残留对菜蛾绒茧蜂成虫的致死和亚致死效应[J]. 植物保护学报, 2002(4):325-330.
|
[8] |
沈燕. 小麦生产中常用农药的残留特性与降解机制[D]. 扬州: 扬州大学, 2007.
|
[9] |
TOMIZAWA M, CASIDA J E. Neonicotinoid insecticide toxicology: mechanisms of selective action[J]. Annual review of pharmacology and toxicology, 2005, 45:247-268.
pmid: 15822177
|
[10] |
BROWN L A, IHARA M, BUCKINGHAM S D, et al. Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors[J]. Journal of neurochemistry, 2006, 99(2):608-615.
pmid: 16899070
|
[11] |
BUCKINGHAM S, LAPIED B, CORRONC H, et al. Imidacloprid actions on insect neuronal acetylcholine receptors[J]. Journal of experimental biology, 1997, 200(21):2685-2692.
|
[12] |
MEIJER N, RIJK T D, LOON J J A V, et al. Effects of insecticides on mortality, growth and bioaccumulation in black soldier fly (Hermetia illucens) larvae[J]. PLoS one, 2021, 16(4):e0249362.
|
[13] |
ZHANG A, ZHU L, SHI Z, et al. Effects of imidacloprid and thiamethoxam on the development and reproduction of the soybean aphid Aphis glycines[J]. PLoS one, 2021, 16(9):e0250311.
|
[14] |
AYYANATH M, CUTLER G, SCOTT-DUPRE C, et al. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid[J]. PLoS one, 2013, 8(9):e74532.
|
[15] |
CUTLER G, RAMANADU K, ASTAKIE T, et al. Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin[J]. Pest management science, 2009, 65(2):205-9.
|
[16] |
YU Y, SHEN G, ZHU H, LU Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer)[J]. Pesticide biochemistry and physiology, 2010, 98(2):238-42.
|
[17] |
LI X, LI Y, ZHU X, et al. Effects of imidacloprid-induced hormesis on the development and reproduction of the rose-grain aphid Metopolophium dirhodum (Hemiptera: Aphididae)[J]. Frontiers in physiology, 2023, 14:1113464.
|
[18] |
ULLAH F, GUL H, DESNEUX N, et al. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii[J]. Entomological science, 2019, 39:325-37.
|
[19] |
RIX R R, CUTLER G C. Low Doses of a Neonicotinoid stimulate reproduction in a beneficial predatory insect[J]. Journal of economic entomology, 2020, 113(5):2179-2186.
doi: 10.1093/jee/toaa169
pmid: 32814948
|
[20] |
MEIKLE W G, COLIN T, ADAMCZYK J J, et al. Traces of a neonicotinoid pesticide stimulate different honey bee colony activities, but do not increase colony size or longevity[J]. Ecotoxicology and environmental safety, 2022, 231:113202.
|
[21] |
JAMES D G, PRICE T S. Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid[J]. Journal of economic entomology, 2002, 95(4):729-732.
pmid: 12216813
|
[22] |
PURSCHKE B, SCHEIBELBERGER R, AXMANN S, et al. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain[J]. Food additives and contaminants: part a, chemistry, analysis, control, exposure and risk assessment, 2017, 34(8):1410-1420.
|
[23] |
GAO Y, WANG H, LIU C, et al. Development of black soldier fly (Hermetia illucens) larvae on food waste-based diets contaminated with heavy metals and pesticide residues[J]. Journal of cleaner production, 2019, 234:1459-1467.
|
[24] |
LALANDER C H, FIDJELAND J, DIENER S, et al. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling[J]. Agronomy for sustainable development, 2015, 35(1):261-271.
|
[25] |
WANG Y S, SHELOMI M. Review of black soldier fly (Hermetia illucens) as animal feed and human food[J]. Foods, 2017, 6(10):91.
|
[26] |
DIENER S, ZURBRÜGG C, TOCKNER K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates[J]. Waste management and research, 2009, 27(6):603-610.
|
[27] |
CHARPENTIER G, LOUAT F, BONMATIN JM, et al. Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster[J]. Environmental science & technology, 2014, 48(7):4096-102.
|