Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (32): 108-114.doi: 10.11924/j.issn.1000-6850.casb18100011
Special Issue: 油料作物
Previous Articles Next Articles
Received:
2018-10-08
Revised:
2019-10-15
Accepted:
2018-12-24
Online:
2019-11-19
Published:
2019-11-19
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb18100011
[1] National Bureal of Statistics. http://www.Stats.gov.cn/ [Z]. [2] Chen K R,Ren L,Xu L,et al. Research progress on peanut southern stem rot caused by Sclerotium rolfsii (in Chinese) [J]. ChineseJournal of Oil Crop Sciences(中国油料作物学报),2018,40(2):203-308. [3] Rogerson C T,Boom B M . Fungi on plants and plant products in the United States. By David F. Farr, Gerald F. Bills, George P. Chamuris, and Amy Y. Rossman [J]. Mycologia,1989,42(3):243-246. [4] Yang J Z. Study on control of peanut southem stem rot(in Chinese)[J]. Anhui Agricultural Science(安徽农业科学),1963,3(2): 12-15. [5] Rolfs P H. Tomato blight: some hints. [J]. Bulletin Fla Agric Experimentation Station,1892,p.18. [6] Saccardo P A. Notae mycologicae [J]. Ann Mycol,1911,9(10):320-321. [7] Wu X Q. Study on the Population Differentiation of Tree Pathogenic Fungi(in Chinese)[J]. Forest Research(林业科学研究),2000, 13(4):423-430. [8] Kohn L M,Stasovski E,Carbone I,et al. Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum [J]. Phytopathology,1991,81(4):480-485. [9] Leslie J F. Fungal vegetative compatibility [J]. Annual Review of Phytopathology,1993,31(31):127. [10] Nalim F A,Starr J L,Woodard K E,et al. Mycelial compatibility groups in Texas peanut field populations of Sclerotium rolfsii [J]. Phytopathology,1995,85(12):1507-1512. [11] Okabe I,Matsumoto N. Population structure of Sclerotium rolfsii in peanut fields [J]. Mycoscience,2000,41(2):145-148. [12] Cilliers A J,Pretorius Z A,Wykp S V,et al. Mycelial compatibility groups of Sclerotium rolfsii in South Africa [J]. South African Journal of Botany,2002,68(3):389-392. [13] Xie C,Huang C H,Vallad G E. Mycelial compatibility and pathogenic diversity among Sclerotium rolfsii isolates in the southern united states [J]. Plant Disease,2012,98(12):1685-1694. [14] Le C N,Mendes R,Kruijt M, et al. Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in central vietnam [J]. Plant Disease,2012,96(3):389-397. [15] Mehri Z,Khodaparast S A,Mousanejad S. Genetic diversity in Sclerotium rolfsii populations based on mycelial compatibility groups in Guilan Province, Iran [J]. Iranian Journal of Plant Pathology,2013,(49):99-100. [16] Song W D,Yan L Y,Lei Y,et al. ITS typing,myceial compatibility groups and related biological characteristics comparison ofpeanut southern stem rot pathogen from different locations in China(in Chinese)[J]. Acta Phytopathologica Sinica(植物病理学报),2017,1-12. [17] Jebaraj M D,Aiyanathank E A,Nakkeeran S. Virulence and genetic diversity of Sclerotium rolfsii Sacc., infecting groundnut using nuclear (RAPD ISSR) markers [J]. Journal of Environmental Biology,2017,38(1):147-159. [18] Bateman D F,Beer S V. Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogesis by Sclerotium rolfsii [J]. Phytopathology,1965,55(2):204. [19] Cessna S G,Sears V E,Dickman M B,et al. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant [J]. Plant Cell,2000,12(11):2191-2200. [20] Punja Z K,Huang J S,Jenkins S F. Relationship of mycelial growth and production of oxalic acid and cell wall degrading enzymes to virulence in Sclerotium Rolfsii [J]. Canadian Journal of Plant Pathology,1985,7(2):109-117. [21] Bateman D F. Depletion of the galacturonic acid content in Bean hypocotyi cell walls during pathogenesis by Rhizoctonia solani and Sclerotium rolfsii [J]. Phytopathology,1970,(12):1846-1847. [22] Takach J E. Analysis of genes involved in developmental pathways in two basidomycetous fungi, Ustilago maydis and Sclerotium rolfsii [D]. University of Georgia Theses and Dissertations,,2009. [23] Zhong J,Chen D,Zhu H J,et al. Hypovirulence of Sclerotium rolfsii Caused by Associated RNA Mycovirus [J]. Frontiers in Microbiology,2016,7(173):1798-1816. [24] Iquebal M A,Tomar R S,Parakhia M V,et al. Draft whole genome sequence of groundnut stem rot fungus Athelia rolfsii revealing genetic architect of its pathogenicity and virulence [J]. Scientific Reports,2017,7(1):5299 [25] Acero F J F,Carb M,Elakhal M R,et al. Development of Proteomics-Based Fungicides: New Strategies for Environmentally Friendly Control of Fungal Plant Diseases [J]. International Journal of Molecular Sciences,2011,12(1):795. [26] Zhang H M,Zhang L N,Tan Z. Characteristics and comprehensive control of Sclerotium Blight of peanut(in Chinese)[J]. Bulletin of Agricultural Science and Technology(农业科技通讯),2018,(1):219-221. [27] Jadon K S,Thirumalaisamy P P,Kumar V,et al. Management of soil borne diseases of groundnut through seed dressing fungicides [J]. Crop Protection,2015,(78):198-203. [28] Doley K,JiteI P K. Management of stem-rot of groundnut (Arachis hypogaea L.) cultivar in field [J]. Notulae Scientia Biologicae,2013,5(3):26-30 [29] Ganesan P,Gnanamanickam S S. Biological control of Sclerotium rolfsii sacc. in peanut by inoculation with Pseudomonas fluorescens [J]. Soil Biology Biochemistry,1987,19(1):35-38. [30] YangQ Q. The effects and mechanisms of Bacillus subtilis Y14 on peanut growth promotion and disease control(in Chinese)[D],Taian:Shandong Agriculture University(泰安:山东农业大学),2016. [31] Lu Y,Li C,Chen Z D,et al. Biological control activities of Bacillus amyloliquefaciens 41B-1 against Sclerotium rolfsii(in Chinese)[J]. ChineseJournal of Oil Crop Sciences(中国油料作物学报),2016,38(4):487-494. [32] Yang N,Li LY,Sun S S,et al. Research on the control activities of Bacillus amyloliquefaciens LX-J1and bacterial fertilizer against Sclerotium rolfsii(in Chinese)[J]. Journal of Green Science and Technology(绿色科技),2017,(15):73-76. [33] Rashmi K,Sinha B,Pramesh K, et al. Native Trichoderma spp for the Management of Stem Rot of Groundnut Caused by Sclerotium rolfsii Sacc in Manipur [J]. Int. J. Curr. Microbiol. App. Sci ,2017,6(10):1343-1351. [34] Karthikeyan V,Sankaralingam A,Nakkeeran S. Biological control of groundnut stem rot caused by Sclerotium rolfsii (Sacc.) [J]. Archiv F??r Pflanzenschutz,2006,39(3):239-246. [35] Jacob S,Sajjalhuddam R R,Sudini H K. Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii [J]. Journal of Integrative Agriculture,2018,17(4):892-900. [36] Doley K,Dudhane M,Borde M. Biocontrol of Sclerotium rolfsii in Groundnut by Using Microbial Inoculants [J]. Not. Sci. Biol 2017,9(1):124-130. [37] Gao G B,Wei B Y, Huang Y. Selection of producing strain for agricultural antibiotics(in Chinese)[J]. Hunan Agricultural Sciences(湖南农业科学),2009,(7): 5-10. [38] Vineela D,Beura S K,Dhal A, et al. Efficacy of chemicals, bio-agents and their compatibility in management of stem rot disease of groundnut [J]. International Journal of Chemical Studies,2017,5(5) :443-446. [39] Kiran K S,Lingaraju S,Adiver S S. Effect of Plant Extracts on Sclerotium rolfsii, the Incitant of Stem rot of Groundnut [J]. J. Mycol. Pl. Pathol. Vol.,2006,36(1):77-79. [40] Yang G L,Wang J X,Liu W. Effects of 9 herbicides on Sclerotium rolfssi Sacc.(in Chinese)[J]. Acta Phytophlacica Sinica(植物保护学报), 2004,31(4):406-410. [41] Yang G L,Wang J X,Liu W. Effects of three diphenyl-ether herbicides on Sclerotium rolfssi Sacc.(in Chinese)[J]. Journal of Agro-Environment Sciense(农业环境科学学报),2005,24(2):304-307. [42] Wei X K,Lei C L. Effects of oligosaccharides from the housefly larvae on mycelium morphology and ultrastructure of Sclerotium rolfsii(in Chinese)[J]. Journal of Huazhong Agricultural University(华中农业大学学报),2004,23(2):214-217. [43] Lei C L,Wu Y Y,Niu C Y,et al. Preliminary studies on the antifungal mechanism of chitosan from the housefly larvae(in Chinese) [J]. Journal of Huazhong Agricultural University(华中农业大学学报),1998,17(6):531-533. [44] Rakh R R,Raut L S,Dalvi S M,et al. Biological control of Sclerotium rolfsii, causing stem rot of groundnut by Pseudomonas cf. monteilii 9 [J]. Recent Research in Science Technology,2011,3(3):26-34. [45] Kishore G K,Pande S,Rao J N,et al. Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot [J]. European Journal of Plant Pathology,2005,113(3):315-320. [46] Shokes F M,Weber Z,Gorbet D W,et al. Evaluation of peanut genotypes for resistance to southern stem rot using an agar disk technique [J]. Peanut Science,1998,25(1):12-17. [47] Pande S,Rao J N,Reddy M V,et al. Development of a greenhouse screening technique for stem rot resistance in groundnut [J]. International Arachis Newsletter,1994,14(2):23-24. [48] Sennoi,Rattikarn,Jogloy,et al. Genotypic variation of resistance to southern stem rot of Jerusalem;artichoke caused by Sclerotium rolfsii [J]. Euphytica;Netherlands journal of plant breeding,2013,190(3):415-424. [49] Gorbet D W,Kucharek T A,Shokes F M,et al. Field evaluations of peanut germplasm for resistance to stem rot caused by Sclerotium rolfsii [J]. Peanut Science,2004,31(2):91-95. [50] Dong W B,Shi Y M,Sun A X,et al. Inoculation techniques and evaluations of resistance to Sclerotium rolfssi in peanut in greenhouse (in Chinese)[J]. Peanut Science,2001,30(3): 17-20. [51] Yan L Y,Song W D,Zhang F,et al. Artificial inoculation technique for peanut stem rot caused by Sclerotium rolfssi and evaluationresistance of peanut seedling in greenhouse(in Chinese)[J]. ChineseJournal of Oil Crop Sciences(中国油料作物学报), 2017,39(5):687-692. [52] Bera S K,Kamdar J H,Kasundra S V,et al. Identification of groundnut genotypes and wild species resistant to stem rot using an efficient field screening technique [J]. Electronic Journal of Plant Breeding, 2016,7(1):61-70. [53] Ying C Q,Chen S J. Occurrence characteristics and control techniques of peanut stem rot [J]. Chian Agricultural Technology Extension(中国农技推广),2009,25(4):37-39. [54] Shew B B. Field, microplot, and greenhouse evaluations of resistance to Sclerotium rolfsii in peanut [J]. Plant Disease,1987,71(2):188-191. [55] Mehan V K,Mayee C D,Mahonald D,et al. Resistance in groundnut to Sclerotium rolfsii caused stem and pod rot [J]. Pans Pest Articles News Summaries,1995,41(2):79-83. [56] Gorbet D W,Tillman B L. Registration of ‘York’ Peanut [J]. Journal of Plant Registrations,2011,5(3):289. [57] Thirumalaisamy P,Kumar N,Radhkrishnan T,et al. Phenotyping of groundnut genotypes for resistance to sclerotium stem rot [J]. J Mycol Plant Pathol,2014,44(4):459-462. [58] Branch W D,Brenneman T B. Stem rot (white mold) and tomato spotted wilt resistance among peanut genotypes [J]. Peanut Science,2015,150331092047008. [59] Balaraju M,Kenchanagoudar P V,Motagi B N,et al. Screening of groundnut interspecific derivatives for resistance to Sclerotium rolfsii; proceedings of the International Conference of the Peanut Research Community-Advances in Arachis Through Genomics and Biotechnology, F, 2015 [C]. [60] Divyarani V,Sudini H,Narayanreddy P,et al. Resistance screening of groundnut advance breeding lines against collar rot and stem rot pathogens [J]. Int.J.Pure App.Biosci.,2018,6(1):467-474. [61] Macr E S,Phong D T,Upadhyaya H D,et al. SSR analysis of cultivated groundnut ( Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases [J]. Euphytica,2006,152(3):317-330. [62] Janila P,Variath M T,Pandey M K,et al. Genomic tools in groundnut breeding program: status and perspectives [J]. Frontiers in Plant Science,2016,7:1-15. [63] Simpson C E,Starr J L,Church G T,et al. Registration of ‘NemaTAM’ Peanut [J]. Crop Science,2003,43(4):1561 [64] Kamdar J H,Kasundra S V,Darvhankar M S,et al. Marker-assisted breeding for stem rot resistance in groundnut [J]. National Seminar on Strategic Interventions to Enhance Oilseeds Production in India,2015. [65] Bera S K,Kamdar J H,Kasundra S V,et al. A novel QTL governing resistance to stem rot disease caused by Sclerotium rolfsii in peanut [J]. Australasian Plant Pathology,2016,45(6):1-8. [66] Dodla S M,Rathnakumar A L,Mishra G P, et al. Phenotyping and molecular marker analysis for stem-rot disease resistance using F2 mapping population in groundnut [J].Electronic Journal of Plant Breeding,2016,34(4):1135-1139. [67] Pandey M K,Monyo E,Ozias-akins P,et al. Advances in arachis genomics for peanut improvement [J]. Biotechnology Advances, 2012,30(3):639-651. [68] Jogi A,Kerry J W,Brenneman T B,et al. Identification of genes differentially expressed during early interactions between the stem rot fungus ( Sclerotium rolfsii ) and peanut ( Arachis hypogaea ) cultivars with increasing disease resistance levels [J]. Microbiological Research,2016, 184:1-12. [69] Nandini D,Mohanj S S,Singh G. Induction of systemic acquired resistance in arachis hypogaea L. by Sclerotium rolfsii derived elicitors [J]. Journal of Phytopathology,2010,158(9):594-600. |
[1] | ZHANG Tingting, MA Guilong, XIE Xiaobao, GAO Xinxin, CAI Qi. Extract of Bacillus velezensis SX-45: The Antifungal Mechanism Against Fusarium oxysporum of Ginseng [J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 124-131. |
[2] | LIU Kun, SUN Wensong, SHEN Baoyu, ZHANG Tianjing. Isolation and Identification of Pathogenic Fungi Causing Panax ginseng Root Rot in Xinbin of Liaoning [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 86-91. |
[3] | YANG Xiaoxiang, HUANG Xiaoqin, ZHANG Lei, ZHANG Zhongmei, XIAN Yunxi, ZHOU Xiquan, LIU Yong. Biocontrol Fungus Coniothyrium minitans: Effects on Microbial Community Structure in Oilseed Rape Rhizosphere Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 92-98. |
[4] | CHEN Mingyue, JIANG Tao, ZHAO Dongmei, BAI Li, ZHANG Xueqi, MENG Jiao. Application of Advanced Omics Technology in Plant Disease Resistance Research [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 86-91. |
[5] | ZHU Ziping, HE Pengfei, LIU Yinglong, ZHAO Zhenglong, WU Yixin, HE Pengbo, CAI Yongzhan, MUNIR Shahzad, TIAN Yangyang, WANG Junwei, HE Yueqiu. Ecological Study of Rhizopus oryzae Causing Tobacco Leaf Mildew at the Curing Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 122-128. |
[6] | YANG Xiaoxiang, HUANG Xiaoqin, ZHANG Lei, ZHANG Zhongmei, XIAN Yunxi, ZHOU Xiquan, LIU Yong. Colonization of GFP-labelled Bacillus amyloliquefaciens Bam22 in Brassica napus [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 125-130. |
[7] | Wen Huaqiang, Shu Canwei, Zeng Lisha, Zhou Erxun. Fluorescence Quantitative PCR Detection of Fusarium commune from Lotus [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 127-132. |
[8] | Han Shuai, Wu Jie, Zhang Heqing, Liang Genyun, Xi Yadong. Pathogen Identification and Biological Characteristics of a New Anthracnose on Cucumber [J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 96-108. |
[9] | Zhai Yang, Liu Wu, Liu Bin, Tan Ruqing, Liu Shangshou, Wu Nianqing, Yang Meisen, Zeng Liangbin. Preliminary Report on the Control Effect of Three Kinds of Medicaments and Their Combination Against Powdery Mildew of Flos Lonicerae [J]. Chinese Agricultural Science Bulletin, 2021, 37(22): 116-119. |
[10] | Tang Jie, Chen Jianxin, Nima Cimu, Wei Yuqian, Luo Zhui, Han Yuting, Lv Zejia, Ma Huancheng, Wu Jianrong. Pathogen Identification and Biocontrol Screening of Root Rot of Cymbidium sinense [J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 128-133. |
[11] | Li Weijiao, Ren Ke, Pu Shibiao. Endophytic Fungi from Panax notoginseng (Burk.) F.H.Chen: Isolation and Identification [J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 102-108. |
[12] | Shen Yan, He Pengbo, He Pengfei, Wu Yixin, Kong Baohua, Li Xingyu, Shahzad Munir, He Yueqiu. Pathogen Identification and Biological Control of Gray Mold on Postharvest Tomato [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 102-107. |
[13] | Li Ying, Du Chunmei. Virulence Factors of Pathogenic Fusarium oxysporum: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 92-97. |
[14] | Yang Zhenfu, He Pengfei, Wu Yiyin, He Pengbo, Kong Baohua, Zhao Chongjun, Liu Jianjin, He Yueqiu. Endophytic Bacteria YN2014042: Colonization and Growth Promoting Effect on Tobacco and Maize [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 98-105. |
[15] | Liang Yanqiong, Li Rui, Wu Weihuai, Tan Shibei, Xi Jingen, Zheng Jinlong, Lu Ying, He Chunping, Yi Kexian. Volatile Organic Compounds from Bacillus subtilis Czk1: Optimization of Extraction Conditions Based on HS-SPME-GC-MS [J]. Chinese Agricultural Science Bulletin, 2021, 37(11): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||