Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (29): 52-60.doi: 10.11924/j.issn.1000-6850.casb2022-0224
Previous Articles Next Articles
XIA Tao(), LI Mengfei, ZHANG Wen, CHEN Xueying, SHI Yinlian, WANG Hongying, LI Gang, ZHU Wei(
)
Received:
2022-03-30
Revised:
2022-06-15
Online:
2022-10-15
Published:
2022-10-14
Contact:
ZHU Wei
E-mail:2459223031@qq.com;20404184@qq.com
CLC Number:
XIA Tao, LI Mengfei, ZHANG Wen, CHEN Xueying, SHI Yinlian, WANG Hongying, LI Gang, ZHU Wei. Complete Genome Sequence of Pectobacterium carotovorum Strain ZX67: An Plant Pathogen of Amorphophallus konjac Soft Rot Disease[J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 52-60.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2022-0224
Genome features | Stat | In Genome/% |
---|---|---|
Genome size | 4,909,724 bp | 100.00 |
Squence GC | 2,517,215 bp | 51.27 |
coding genes | 4,977×1,041 bp | 85.25 |
interspersed nuclear elements(bp) | 261×88 bp | 0.47 |
Tandem Repeat(bp) | 103×235 bp | 0.49 |
ncRNA | 45,076 bp | 0.92 |
Genomics Islands | 10×36,027 bp | 7.3 |
Transposon | 6×363 bp | 0.04 |
Prophage | 2×26,258 bp | 1.07 |
CRISPR | 5×621 bp | 0.06 |
Genome features | Stat | In Genome/% |
---|---|---|
Genome size | 4,909,724 bp | 100.00 |
Squence GC | 2,517,215 bp | 51.27 |
coding genes | 4,977×1,041 bp | 85.25 |
interspersed nuclear elements(bp) | 261×88 bp | 0.47 |
Tandem Repeat(bp) | 103×235 bp | 0.49 |
ncRNA | 45,076 bp | 0.92 |
Genomics Islands | 10×36,027 bp | 7.3 |
Transposon | 6×363 bp | 0.04 |
Prophage | 2×26,258 bp | 1.07 |
CRISPR | 5×621 bp | 0.06 |
CRISPR_id | Start | End | CRISPR Length | DR_consensus | DR_length | Number of spacers |
---|---|---|---|---|---|---|
Crispr_1 | 859546 | 860418 | 872 | TTTCTAAGCTGCCTATGCGGCAGTGAAC | 28 | 14 |
Crispr_2 | 868987 | 870516 | 1529 | GTTCACTGCCGGATAGGCAGCTTAGAAA | 28 | 25 |
Crispr_3 | 878333 | 878841 | 508 | TTTTCTAAGCTGCCTATCCGGCAGTGAAC | 29 | 8 |
Possible Crispr_4 | 2896052 | 2896150 | 98 | CGGGCCGTTGCTACGCAACGTTGAA | 25 | 1 |
Possible Crispr_5 | 3472205 | 3472305 | 100 | GACGGACAAGGATGTCCGCCATAAAAAAA | 29 | 1 |
CRISPR_id | Start | End | CRISPR Length | DR_consensus | DR_length | Number of spacers |
---|---|---|---|---|---|---|
Crispr_1 | 859546 | 860418 | 872 | TTTCTAAGCTGCCTATGCGGCAGTGAAC | 28 | 14 |
Crispr_2 | 868987 | 870516 | 1529 | GTTCACTGCCGGATAGGCAGCTTAGAAA | 28 | 25 |
Crispr_3 | 878333 | 878841 | 508 | TTTTCTAAGCTGCCTATCCGGCAGTGAAC | 29 | 8 |
Possible Crispr_4 | 2896052 | 2896150 | 98 | CGGGCCGTTGCTACGCAACGTTGAA | 25 | 1 |
Possible Crispr_5 | 3472205 | 3472305 | 100 | GACGGACAAGGATGTCCGCCATAAAAAAA | 29 | 1 |
Strain | Country | Collection date | host | Assembly size | CDS | GC/% | CRISPR Arrays | GenBank |
---|---|---|---|---|---|---|---|---|
ZX67 | China | 2017 | Konjak | 4,909,724 | 4,977 | 51.27 | 5 | CP034211 |
P. wasabiae CFBP 3304 | Japan | 1987 | Eutrema wasabi | 5,043,228 | 4,368 | 50.55 | 3 | CP015750 |
P. brasiliense SX309 | China | 2015 | Cucumber | 4,966,299 | 4,252 | 52.18 | 3 | CP020350 |
P. versatile 14A | Belarus | 1978 | Solanum tuberosum | 4,997,114 | 4,335 | 51.77 | 3 | CP034276 |
P. basiliense BZA12 | China | 2015 | Cucumber | 4,924,809 | 4,251 | 51.98 | 3 | CP024780 |
P. parmentieri IFB5604 | Poland | 2014 | Solanum tuberosum | 4,877,201 | 4,249 | 50.56 | 4 | CP026983 |
P. parmentieri IFB5432 | Poland | 2013 | Solanum tuberosum | 5,010,533 | 4,406 | 50.15 | 4 | CP026979 |
P. polaris NIBIO1006 | Norway | 2010 | Solanum tuberosum | 4,826,824 | 4,056 | 52.03 | 0 | CP017481 |
P. punjabense SS95 | Pakistan | 2017 | Solanum tuberosum | 4,793,778 | 4,172 | 50.67 | 2 | CP038498 |
P. carotovorum subsp. carotovorum JR1.1 | South Korea | 2016 | Radish | 4,872,902 | 4,118 | 51.99 | 4 | CP034237 |
Strain | Country | Collection date | host | Assembly size | CDS | GC/% | CRISPR Arrays | GenBank |
---|---|---|---|---|---|---|---|---|
ZX67 | China | 2017 | Konjak | 4,909,724 | 4,977 | 51.27 | 5 | CP034211 |
P. wasabiae CFBP 3304 | Japan | 1987 | Eutrema wasabi | 5,043,228 | 4,368 | 50.55 | 3 | CP015750 |
P. brasiliense SX309 | China | 2015 | Cucumber | 4,966,299 | 4,252 | 52.18 | 3 | CP020350 |
P. versatile 14A | Belarus | 1978 | Solanum tuberosum | 4,997,114 | 4,335 | 51.77 | 3 | CP034276 |
P. basiliense BZA12 | China | 2015 | Cucumber | 4,924,809 | 4,251 | 51.98 | 3 | CP024780 |
P. parmentieri IFB5604 | Poland | 2014 | Solanum tuberosum | 4,877,201 | 4,249 | 50.56 | 4 | CP026983 |
P. parmentieri IFB5432 | Poland | 2013 | Solanum tuberosum | 5,010,533 | 4,406 | 50.15 | 4 | CP026979 |
P. polaris NIBIO1006 | Norway | 2010 | Solanum tuberosum | 4,826,824 | 4,056 | 52.03 | 0 | CP017481 |
P. punjabense SS95 | Pakistan | 2017 | Solanum tuberosum | 4,793,778 | 4,172 | 50.67 | 2 | CP038498 |
P. carotovorum subsp. carotovorum JR1.1 | South Korea | 2016 | Radish | 4,872,902 | 4,118 | 51.99 | 4 | CP034237 |
酶种类 | 酶基因 | 数量 |
---|---|---|
果胶裂解酶 | Pnl、KKH3_12920 | 2 |
多聚半乳糖醛酸酶 | KKH3_42200 | 1 |
鼠李糖半乳糖醛酸裂解酶 | rhiE、KKH3_05330 | 2 |
果胶甲基酯酶 | pemA | 1 |
果胶乙酰化酶 | KKH3_29960、KKH3_18740 | 2 |
纤维素酶 | celA1、KKH3_20670、KKH3_14460 | 3 |
葡聚糖酶 | bcsZ、cel5、celS、KKH3_22720、KKH3_41050 | 5 |
果胶酸裂解酶 | pelA、B、C、L、W、X,pel1、2、3,KKH3_37720,KKH3_37730,KKH3_37740,KKH3_21450,KKH3_21500,KKH3_28390,KKH3_17430,KKH3_08410和PCC21_038530 | 18 |
酶种类 | 酶基因 | 数量 |
---|---|---|
果胶裂解酶 | Pnl、KKH3_12920 | 2 |
多聚半乳糖醛酸酶 | KKH3_42200 | 1 |
鼠李糖半乳糖醛酸裂解酶 | rhiE、KKH3_05330 | 2 |
果胶甲基酯酶 | pemA | 1 |
果胶乙酰化酶 | KKH3_29960、KKH3_18740 | 2 |
纤维素酶 | celA1、KKH3_20670、KKH3_14460 | 3 |
葡聚糖酶 | bcsZ、cel5、celS、KKH3_22720、KKH3_41050 | 5 |
果胶酸裂解酶 | pelA、B、C、L、W、X,pel1、2、3,KKH3_37720,KKH3_37730,KKH3_37740,KKH3_21450,KKH3_21500,KKH3_28390,KKH3_17430,KKH3_08410和PCC21_038530 | 18 |
GO号 | 蛋白分泌系统类型 | GO号 | 蛋白分泌系统类型 |
---|---|---|---|
0030253 | I型分泌系统分泌蛋白 | 0030256 | Ⅰ型蛋白分泌系统复合体 |
0015628 | Ⅱ型分泌系统分泌蛋白 | 0015627 | Ⅱ型蛋白分泌系统复合体 |
0030254 | III型分泌系统分泌蛋白 | 0030257 | III型蛋白分泌系统复合体 |
0030255 | IV型分泌系统分泌蛋白 | COG3157U | VI型蛋白分泌系统成分HCP |
GO号 | 蛋白分泌系统类型 | GO号 | 蛋白分泌系统类型 |
---|---|---|---|
0030253 | I型分泌系统分泌蛋白 | 0030256 | Ⅰ型蛋白分泌系统复合体 |
0015628 | Ⅱ型分泌系统分泌蛋白 | 0015627 | Ⅱ型蛋白分泌系统复合体 |
0030254 | III型分泌系统分泌蛋白 | 0030257 | III型蛋白分泌系统复合体 |
0030255 | IV型分泌系统分泌蛋白 | COG3157U | VI型蛋白分泌系统成分HCP |
[1] | TESTER R F, AL-GHAZZEWI F H. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan[J]. J sci food agric., 2016(96):3283-3291. |
[2] | WU J, LIU X, DIAO Y, et al. Authentication and characterization of a candidate antagonistic bacterium against soft rot of Amorphophallus konjac[J]. Crop protection, 2012(34):83-87. |
[3] |
HAUBEN L, MOORE E R, VAUTERIN L, et al. Phylogenetic position of phytopathogens within the Enterobacteriaceae[J]. Syst appl microbiol, 1998, 21(3):384-397.
doi: 10.1016/S0723-2020(98)80048-9 URL |
[4] |
WALERON M, MISZTAK A, WALERON M, et al. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov[J]. Syst appl microbiol, 2018, 41(2):85-93.
doi: 10.1016/j.syapm.2017.11.005 URL |
[5] |
MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Mol Plant Pathol, 2012, 13(6): 614-629.
doi: 10.1111/j.1364-3703.2012.00804.x pmid: 22672649 |
[6] | OSBORNE F M. Short Protocols in Molecular Biology[M]. Science publishing house, 2008:39. |
[7] |
ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing[J]. Genome biology, 2013, 14(7):405.
doi: 10.1186/gb-2013-14-6-405 pmid: 23822731 |
[8] |
KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome[J]. Nucleic acids res, 2004, 32(Database issue):277-280.
pmid: 14681412 |
[9] |
TATUSOV R L, FEDOROVA N D, JACKSON J D, et al. The COG database: an updated version includes eukaryotes[J]. BMC Bioinformatics, 2003, 4(1):41.
doi: 10.1186/1471-2105-4-41 URL |
[10] |
ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nat genet, 2000, 25(1):25-29.
doi: 10.1038/75556 pmid: 10802651 |
[11] |
LI W, JAROSZEWSKI L, GODZIK A. Tolerating some redundancy significantly speeds up clustering of large protein databases[J]. Bioinformatics, 2002, 18(1):77-82.
pmid: 11836214 |
[12] |
AMOS B, ROLF A. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic acids res, 2000, 28(1):45-48.
pmid: 10592178 |
[13] | MAGRANE M. UniProt Knowledgebase: a hub of integrated protein data[J]. Database:the journal of biological databases and curation, 2011(0):bar009. |
[14] |
MISTRY J, FINN R. Pfam: a domain-centric method for analyzing proteins and proteomes[J]. Methods mol biol, 2007, 396:43-58.
pmid: 18025685 |
[15] |
LOWE T M, EDDY S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic acids research, 1997, 25(5):955-964.
pmid: 9023104 |
[16] |
LAGESEN K, HALLIN P, RøDLAND EA, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic acids res, 2007, 35(9):3100-3108.
pmid: 17452365 |
[17] |
GARDNER P P, DAUB J, TATE J G, et al. Rfam: updates to the RNA families database[J]. Nucleic acids research, 2009, 37 (Database issue):136-140.
doi: 10.1093/nar/gkn766 pmid: 18953034 |
[18] |
CUI X, LU Z, WANG S, et al. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction[J]. Bioinformatics (Oxford, England), 2016, 32(12):i332-i340.
doi: 10.1093/bioinformatics/btw271 URL |
[19] |
HSIAO W, WAN I, JONES SJ, et al. IslandPath: aiding detection of genomic islands in prokaryotes[J]. Bioinformatics (Oxford, England), 2003, 19(3):418-420.
doi: 10.1093/bioinformatics/btg004 URL |
[20] |
ZHOU Y, LIANG Y, LYNCH KH, et al. PHAST: a fast phage search tool[J]. Nucleic acids res, 2011, 39(Web Server issue):347-352.
doi: 10.1093/nar/gkr485 pmid: 21672955 |
[21] |
SAHA S, BRIDGES S, MAGBANUA ZV, et al. Empirical comparison of ab initio repeat finding programs[J]. Nucleic acids res, 2008, 36(7):2284-2294.
doi: 10.1093/nar/gkn064 pmid: 18287116 |
[22] |
BENSON G. Tandem repeats finder: a program to analyze DNA sequences[J]. Nucleic acids res, 1999, 27(2):573-580.
pmid: 9862982 |
[23] |
GRISSA I1 VERGNAUD G, POURCEL C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats[J]. Nucleic acids res, 2007, 35(Web Server issue):52-57.
pmid: 17537822 |
[24] |
KRZYWINSKI M, SCHEIN J, BIROL I, et al. Circos: an information aesthetic for comparative genomics[J]. Genome res, 2009, 19(9):1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[25] |
NIEMI O, LAINE P, KOSKINEN P, et al. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1[J]. Stand genomic sci, 2017, 12(1):1-8.
doi: 10.1186/s40793-016-0218-y URL |
[26] |
HYATT D, CHEN GL, LOCASCIO PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC bioinformatics, 2010, 11(1):119.
doi: 10.1186/1471-2105-11-119 URL |
[27] |
TATUSOVA T, DICUCCIO M, BADRETDIN A, et al. NCBI prokaryotic genome annotation pipeline[J]. Nucleic acids res, 2016, 44(14):6614-6624.
doi: 10.1093/nar/gkw569 pmid: 27342282 |
[28] |
JACOBSEN T, BARDIAUX B, FRANCETIC O, et al. Structure and function of minor pilins of type IV pili[J]. Medical microbiology and immunology, 2020, 209(3):301-308.
doi: 10.1007/s00430-019-00642-5 pmid: 31784891 |
[29] |
CHARKOWSKI A, BLANCO C, CONDEMINE G, et al. The role of secretion systems and small molecules in soft-rot enterobacteriaceae pathogenicity[J]. Annu rev phytopathol, 2012, 50(1):425-449.
doi: 10.1146/annurev-phyto-081211-173013 URL |
[30] |
NAVARRO-GARCIA F, RUIZ-PEREZ F, CATALDI Á, et al. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition[J]. Front microbiol, 2019, 10:1965.
doi: 10.3389/fmicb.2019.01965 URL |
[31] |
MCCARTHY R R, YU M, EILERS K, et al. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens[J]. Mol microbiol, 2019, 112(2):632-648.
doi: 10.1111/mmi.14279 URL |
[1] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[2] | CHEN Dao, WANG Xin, JIANG Shan, ZHANG Jie, WU Zujian, DING Xinlun. Strawberry Mottle Virus Isolated in Fujian: Complete Genome Sequence and Molecular Variation [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 94-101. |
[3] | LIU Xiaoying, WU Bijun, ZHANG Younan, HUANG Feilong, LIU Guoqiang. Genetic Diversity and Genetic Relationship Analysis of Longan Germplasm Resources Based on ISSR Markers [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 60-65. |
[4] | YAO Qiong, QUAN Linfa, XU Shu, DONG Yizhi, LI Wenjing, CHI Yanyan, CHEN Bingxu. Identification and Characterization of Opsin Genes from Thalassodes immissaria and Gene Expression After White LED Treatment [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 103-109. |
[5] | LI Qiaoqiao, WANG Yuqing, LIU Rui, LIU Naixin, PI Zhi, WU Zedong. The Whole Genome SSR Primers of Sugar Beet: Screening and Evaluation [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 95-99. |
[6] | YOU Mengyao, YAN Jiajia, WAN Lu, ZHANG He, ZHENG Chunying. An Aroma-producing Endophytic Fungus RP2 from Glycyrrhiza uralensis: Preliminary Identification and Volatile Components' Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 138-145. |
[7] | Xiang Xiaohua, Li Yuan, Zhang Xingwei, Liu Guoxiang, Yang Jing, Zhao Wentao, Wen Gang, Shao Yu, Fan Jingyuan, Lv Hongkun. Identification and Genetic Diversity Analysis of Newly Collected Tobacco Germplasm Resources in Hainan Province [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 59-67. |
[8] | Sun Mingyang, Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua. The Full-length Transcriptome of Kalmegh (Andrographis paniculate): Sequencing and Characterization [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 82-89. |
[9] | Zhang Chengcai, Xiang Zengxu. Test-tube Seedlings of Atractylodes lancea (Thunb.) DC: ISSR and MSAP Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 72-78. |
[10] | Hong Keqian, Xia Weili, Li Peiling, Xu Hanbing, Gu Hui, Chen Li. Data Mining of Simple Sequence Repeats in Dendrobium huoshanense Transcriptome [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 106-110. |
[11] | Nina Sun, Ming Zhao, Dongmei Wang, Liang Sun, Meiling Yan, Qian Zhao, Hongming Jiang, Jingchuan Yu, Linzhi Li. Breeding Value of Wheat Key Parent Material ‘Lumai 14’ [J]. Chinese Agricultural Science Bulletin, 2020, 36(10): 13-17. |
[12] | . An Entomogenous Fungus: Isolation, Evolutionary Relationship Analysis and Pathogenicity Determination [J]. Chinese Agricultural Science Bulletin, 2019, 35(7): 77-82. |
[13] | 谭放军,,, and . Cluster Analysis of Pepper Based on Main Agronomic Traits and trnH-psbA Sequences [J]. Chinese Agricultural Science Bulletin, 2019, 35(27): 72-78. |
[14] | 王红莹,李刚,史银连 and . Bacillus megaterium Strain ZX001: Isolation and Identification and Its Relationship with Konjac Soft Rot Disease [J]. Chinese Agricultural Science Bulletin, 2019, 35(21): 103-109. |
[15] | . Methods to Detect the SSR Amplified Product in Sugar Beet: A Comparative Study [J]. Chinese Agricultural Science Bulletin, 2018, 34(35): 44-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||