中国农学通报 ›› 2021, Vol. 37 ›› Issue (15): 72-77.doi: 10.11924/j.issn.1000-6850.casb2020-0416
方雅各(), 苏有健, 廖万有, 张永利, 罗毅, 孙宇龙, 廖珺, 王烨军(
)
收稿日期:
2020-08-31
修回日期:
2020-12-30
出版日期:
2021-05-25
发布日期:
2021-05-18
通讯作者:
王烨军
作者简介:
方雅各,男,1992年出生,安徽桐城人,研究实习员,硕士,研究方向:茶园氮循环。通信地址:245000 安徽黄山屯溪区鬲山大道28号 安徽省农业科学院茶叶研究所,Tel:0559-2591977,E-mail: 基金资助:
Fang Yage(), Su Youjian, Liao Wanyou, Zhang Yongli, Luo Yi, Sun Yulong, Liao Jun, Wang Yejun(
)
Received:
2020-08-31
Revised:
2020-12-30
Online:
2021-05-25
Published:
2021-05-18
Contact:
Wang Yejun
摘要:
茶园土壤通过微生物作用释放大量氧化亚氮(N2O),因此需迫切了解茶园土壤N2O产生机制及影响因素,以期为茶园土壤N2O减排提供理论依据。从氮源、有机质、pH、水分、温度、质地等角度对茶园土壤N2O排放的影响进行综述,提出相应的N2O减排措施。对以上影响因素阐述发现:反硝化作用对茶园土壤N2O排放的贡献较大;氮肥施用、土壤理化性质、气象因子等是茶园土壤N2O排放的关键因素。施用缓释氮肥、氮肥深施、采用氮肥推荐施用量、养分有机替代技术能降低茶园土壤N2O排放。
中图分类号:
方雅各, 苏有健, 廖万有, 张永利, 罗毅, 孙宇龙, 廖珺, 王烨军. 茶园土壤N2O排放的影响因素及减排措施[J]. 中国农学通报, 2021, 37(15): 72-77.
Fang Yage, Su Youjian, Liao Wanyou, Zhang Yongli, Luo Yi, Sun Yulong, Liao Jun, Wang Yejun. Influencing Factors of N2O Emission from Tea Garden Soil and Emission Reduction Measures[J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 72-77.
[1] | IPCC. Climate change 2013: the physical science basis[M]. Cambridge, UK and New York, USA: Cambridge University Press, 2013:714. |
[2] | United Nations Environment Programmed (UNEP). Drawing down N2O to protect climate and the ozone layer: A UNEP synreport report[R]. Kenya: Nairobi, 2013:1-57. |
[3] |
Prinn R G, Weiss R F, Arduini J, et al. History of chemically and radioactively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment(AGAGE)[J]. Earth System Science Data, 2018,10(2):985-1018.
doi: 10.5194/essd-10-985-2018 URL |
[4] |
Tian H Q, Yang J, Xu R T, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty[J]. Global Change Biology, 2019,25(2):640-659.
doi: 10.1111/gcb.2019.25.issue-2 URL |
[5] | FAO. World agriculture: Towards 2015/2030. An FAO perspective, FAO[R]. Rome,Italy, 2013. |
[6] |
Amélie A M C, Juliette M G B, Nicolas D, et al. Effects of Climate Change Drivers on Nitrous Oxide Fluxes in an Upland Temperate Grassland[J]. Ecosystems, 2011,14(2):223-233.
doi: 10.1007/s10021-010-9405-7 URL |
[7] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. |
[8] | FAO. FAOSTAT:Faostat agriculture data[EB/OL].[2019-12-17]. http://www.fao.Org/faostat/en/#data. |
[9] |
Cui Z L, Wang G L, Yue S C, et al. Closing the N-use efficiency gap to achieve food and environmental security[J]. Environment Science & Technology, 2014,48(10):5780-5787.
doi: 10.1021/es5007127 URL |
[10] | 姚志生, 王燕, 王睿, 等. 中国茶园N2O排放及其影响因素[J]. 农业环境科学学报, 2020,39(04), 715-725. |
[11] | 何甜甜, 刘天, 云菲, 等. 生物炭对农田N2O排放的影响机制研究[J/OL]. 中国农业科技导报:1-9[2020-09-28]. https://doi.org/10.13304/j.nykjdb.2019.1081. |
[12] |
Liu Q H, Qin Y M, Zou J W, et al. Annual nitrous oxide emissions from open-air and greenhouse vegetable cropping systems in China[J]. Plant and Soil, 2013,370(1-2):223-233.
doi: 10.1007/s11104-013-1622-3 URL |
[13] |
Jumadi O, Hala Y, Inubushi K. Production and emission of nitrous oxide and responsible microorganisms in upland acid soil in Indonesia[J]. Soil Science and Plant Nutrition, 2005,51(5):693-696.
doi: 10.1111/j.1747-0765.2005.tb00093.x URL |
[14] |
Yue Q, Wu H, Sun J F, et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China[J]. Environment Science & Technology, 2019,53(17):10246-10257.
doi: 10.1021/acs.est.9b01285 URL |
[15] | 刘美雅, 伊晓云, 石元值, 等. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 2015,35(02):110-120. |
[16] | 李欣雨, 夏建国, 田汶艳. 稻田植茶后土壤团聚体水稳性变化特征及影响因素分析[J]. 水土保持学报, 2017,31(04):148-153,204. |
[17] | 王晟强, 郑子成, 李廷轩. 植茶年限对土壤团聚体氮、磷、钾含量变化的影响[J]. 植物营养与肥料学报, 2013,19(06):1393-1402. |
[18] | 母媛, 袁大刚, 兰永生, 等. 植茶年限对土壤pH值、有机质与酚酸含量的影响[J]. 中国土壤与肥料, 2016,4:44-48. |
[19] | 杨佳, 郑子成, 李廷轩. 不同植茶品种土壤团聚体及其全铝和交换态铝的分布特征[J]. 农业环境科学学报, 2019,38(03):583-589. |
[20] | Butterbachbahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013,368(1621):1-13. |
[21] | 张珂彬, 王毅, 刘新亮, 等. 茶园氧化亚氮排放机制及减排措施研究进展[J]. 生态与农村环境学报, 2020,36(04):413-424. |
[22] |
Hayatsu, Masahito. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J]. Soil Science and Plant Nutrition, 1993,39(2):219-226.
doi: 10.1080/00380768.1993.10416993 URL |
[23] |
Xue D, Gao Y M, Yao H Y, et al. Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils[J]. Journal of Environmental Sciences, 2009,21(9):1225-1229.
doi: 10.1016/S1001-0742(08)62408-0 URL |
[24] | 黄莹, 李雅颖, 姚槐应. 强酸性茶园土壤中添加不同肥料氮后N2O释放量变化[J]. 植物营养与肥料学报, 2013,19(06):1533-1538. |
[25] | Nägele W, Conrad R. Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N2O[J]. FEMS Microbiology Reviews, 1990,74(1):49-57. |
[26] |
Pansombat K, Kanazawa S, Horiguchi T. Microbial ecology in tea soils Ⅱ. Soil protease activity[J]. Soil Science and Plant Nutrition, 1997,43(2):431-438.
doi: 10.1080/00380768.1997.10414766 URL |
[27] | Toduda S, Hayatsu M. Nitrous oxide production from strongly acid tea field soils[J]. Soil Science and Plant Nutria, 2000,46(4):835-844. |
[28] |
Rütting T, Huygens D, Boeckx P, et al. Increased fungal dominance in N2O emission hotspots along a natural pH gradient in organic forest soil[J]. Biology and Fertility of Soils, 2013,49(6):715-721.
doi: 10.1007/s00374-012-0762-6 URL |
[29] |
Huang Y, Xiao X, Long X. Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil[J]. Journal of Soils and Sediment, 2017,17(6):1599-1606.
doi: 10.1007/s11368-017-1655-y URL |
[30] |
Chen D, Li Y, Wang C, et al. Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China[J]. Nutrient Cycling in Agroecosystems, 2017,107(2):157-173.
doi: 10.1007/s10705-017-9826-1 URL |
[31] | 周丰, 崔晓庆, 尚子吟, 等. 农田N2O排放时空格局的形成机理和全球评估[J]. 农业环境科学学报, 2020,39(04):680-690. |
[32] | 林衣东, 韩文炎. 不同土壤N2O 排放的研究[J]. 茶叶科学, 2009,29(6):456-464. |
[33] | 王峰, 陈玉真, 尤志明, 等. 茶园土壤氮含量、施氮效应及其N2O排放的研究进展[J]. 福建农业学报, 2014,29(10):1045-1050. |
[34] | 殷欣, 田亚男, 谢琪, 等. 尿素及秸秆添加对华中地区茶园土壤CO2和N2O排放的影响[J]. 中国农学通报, 2015,31(36):211-219. |
[35] | 何志龙, 周维, 田亚男, 等. 中亚热带丘陵区茶园和林地土壤春季N2O排放及其影响因素[J]. 农业环境科学学报, 2016,35(6):1210-1217. |
[36] | 吕天新, 伍延正, 沈健林, 等. 氮肥深施及间种白三叶草对茶园N2O排放的影响[J]. 应用生态学报, 2019,40(9):4221-4229. |
[37] | 田亚男, 何志龙, 吕昭琪, 等. 凋落茶叶对华中地区酸化茶园土壤N2O与CO2排放的影响[J]. 农业环境科学学报, 2016,35(8):1625-1632. |
[38] | 阮建云, 马立锋, 伊晓云, 等. 茶树养分综合管理与减肥增效技术研究[J]. 茶叶科学, 2020,40(01):85-95. |
[39] | 王峰, 陈玉真, 吴志丹, 等. 我国典型茶区化学氮肥施用与生产运输过程的温室气体排放量估算[J]. 茶叶科学, 2020,40(02):205-214. |
[40] |
Tokuda S, Haystsu M. Nitrous oxide flux from a tea field amended with a aarge amount of nitrogen fertilizer and soil environmental factors controlling the flux[J]. Soil Science and Plant Nutrition, 2004,50(3):365-374.
doi: 10.1080/00380768.2004.10408490 URL |
[41] |
Giguere A T, Taylor A E, Suwa Y C, et al. Uncoupling of ammonia oxidation from nitrite oxidation: Impact upon nitrous oxide production in non-cropped Oregon soils[J]. Soil Biology and Biochemistry, 2017,104:30-38.
doi: 10.1016/j.soilbio.2016.10.011 URL |
[42] |
Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(25):9199-9204.
doi: 10.1073/pnas.1322434111 pmid: 24927583 |
[43] |
Song X T, Liu M, Ju X T, et al. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain[J]. Environmental Science & Technology, 2018,52(21):12504-12513.
doi: 10.1021/acs.est.8b03931 URL |
[44] |
Meihua D, Mudan H, Naoko O O, et al. Nitrous Oxide Emission From Organic Fertilizer and Controlled Release Fertilizer in Tea Fields[J]. Agriculture, 2017,7(3):29-40.
doi: 10.3390/agriculture7030029 URL |
[45] |
Wu Y Z, Li Y, Fu X Q, et al. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical central China[J]. Environmental Science and Pollution Research, 2018,25:25580-25590.
doi: 10.1007/s11356-018-2646-2 URL |
[46] |
Huang Y, Li Y Y, Yao H Y. Nitrate enhances N2O emission more than ammonium in a highly acidic soil[J]. Journal of Soils and Sediments, 2014,14(1):146-154.
doi: 10.1007/s11368-013-0785-0 URL |
[47] |
Hirono, Nonaka. Effects of application of lime nitrogen and dicyandiamide on nitrous oxide emissions from green tea fields[J]. Soil Science and Plant Nutrition, 2014,60(2):276-285.
doi: 10.1080/00380768.2014.890015 URL |
[48] |
Yamamoto A, Akiyama H, Naokawa T, et al. Lime-nitrogen application affects nitrification, denitrification, and N2O Emission in an acidic tea soil[J]. Biology and Fertility of Soils, 2014,50(1):53-62.
doi: 10.1007/s00374-013-0830-6 URL |
[49] | 张振梅, 石元值, 马立锋, 等. 采摘标准与施氮水平对茶树春茶产量、品质及氮素利用的影响[J]. 茶叶科学, 2015,34(5):506-514. |
[50] | 马立锋, 苏孔武, 黎金兰, 等. 控释氮肥对茶叶产量、品质和氮素利用效率及经济效益的影响[J]. 茶叶科学, 2015,34(4):354-362. |
[51] | 吴志丹, 尤志明, 江福英, 等. 配施有机肥对茶园土壤性状及茶叶产质量的影响[J]. 土壤, 2016,47(5):874-879. |
[52] | 曹文超, 宋贺, 王娅静, 等. 农田土壤N2O 排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019,25(10):1781-1798. |
[53] | Nguyen C. Rhizodeposition of organic C by plants: mechanisms and controls[J]. Agronomy for Sustainable Development, 2003,23(5-6):375-396. |
[54] |
Højberg O, Binnerup S J, Sørensen J. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere[J]. Soil Biology and Biochemistry, 1996,28(1):47-54.
doi: 10.1016/0038-0717(95)00119-0 URL |
[55] |
Mahmood T, Ali R, Malik K A, et al. Denitrification with and without maize plants (Zeal mays L.) under irrigated field conditions[J]. Biology and Fertility of Soils, 1997,24(3):323-328.
doi: 10.1007/s003740050251 URL |
[56] | Jensen L S, Schjørring J K, Dammgaard-Poulsen H, et al. Benefits of nitrogen for food, fiber and industrial production[M]. Oxford city: Cambridge University Press, 2011:32-61. |
[57] | Fu X Q, Li Y, Shen J L, et al. Annual dynamics of N2O emissions from a tea field in southern subtropical China[J]. Plant,Soil and Environment, 2012,64:373-378. |
[58] |
Cayuela M L, Sánchez-Monedero M A, Roig A, et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013,3:1732-1738.
doi: 10.1038/srep01732 pmid: 23615819 |
[59] |
Lan Z M, Chen C R, Rashti M R, et al. High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil[J]. Global Change Biology Bioenergy, 2018,10(12):930-945.
doi: 10.1111/gcbb.2018.10.issue-12 URL |
[60] | Oo A Z, Sudo S, Win K T, et al. Returning Tea Pruning Residue and Its Biochar Had a Contrasting Effect on Soil N2O and CO2 Emissions From Tea Plantation Soil[J]. Atmosphere, 2018,9(3):1-16. |
[61] | 孙贇, 何志龙, 林杉, 等. 不同生物质炭对酸化茶园土壤N2O和CO2排放的影响[J]. 农业环境科学学报, 2017,36(12):2544-2552. |
[62] | 蔡延江, 丁维新, 项剑. 土壤N2O和NO产生机制研究进展[J]. 土壤, 2012,44(5):712-718. |
[63] |
Baggs E M, Smales B C, Bateman E J. Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil[J]. Biology and Fertility of Soils, 2010,46:793-809.
doi: 10.1007/s00374-010-0484-6 URL |
[64] |
Qu Z, Wang J G, Almøy T, et al. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils[J]. Global Change Biology, 2014,20(5):1685-1698.
doi: 10.1111/gcb.2014.20.issue-5 URL |
[65] |
Russenes A L, Korsaeth A, Bakken L R, et al. Spatial variation in soil pH controls off-season N2O emission in an agricultural soil[J]. Soil Biology and Biochemistry, 2016,99:36-46.
doi: 10.1016/j.soilbio.2016.04.019 URL |
[66] |
Chen H H, Mothapo N V, Shi W. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production[J]. Microbial Ecology, 2015,69(1):180-191.
doi: 10.1007/s00248-014-0488-0 URL |
[67] | 谢立勇, 叶丹丹, 张贺, 等. 旱地土壤温室气体排放影响因子及减排增汇措施分析[J]. 中国农业气象, 2011,32(4):481-487. |
[68] | 陈玉真, 王峰, 尤志明, 等. 添加生物黑炭对茶园土壤CO2、N2O 排放的影响[J]. 农业环境科学学报, 2015,34(5):1009-1016. |
[69] |
Zaw O A, Shigeto S, Hiroko A, et al. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil[J]. Plos One, 2018,13(2):e0192235.
doi: 10.1371/journal.pone.0192235 URL |
[70] |
Muhammad S, Peng Q A, Hu R, et al. Dolomite application to acidic soils: a promising option for mitigating N2O emissions[J]. Environmental Science and Pollution Research, 2015,22(24):19961-19970.
doi: 10.1007/s11356-015-5238-4 URL |
[71] |
Matson, Naylor P A, Ortiz-Monasterio R, et al. Integration of environmental, agronomic, and economic aspects of fertilizer management[J]. Science, 1998,280(5360):112-115.
doi: 10.1126/science.280.5360.112 URL |
[72] | 张珂彬, 刘新亮, 康曼, 等. 间种高粱及施用大颗粒尿素对茶园N2O排放的影响[J]. 环境科学, 2020,41(05), 2434-2444. |
[73] |
Maag M, Vinther F P. Nitrous oxide emission by nitrification and denitrification in the different soil types and at different soil moisture contents and temperature[J]. Applied Soil Ecology, 1996,4(1):5-14.
doi: 10.1016/0929-1393(96)00106-0 URL |
[74] |
Butterbach-Bahl K, Dannenmann M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate[J]. Current Opinion in Environmental Sustainability, 2011,3(5):389-395.
doi: 10.1016/j.cosust.2011.08.004 URL |
[75] | Granli T, Bøckman O C. Nitrous oxide from agriculture[J]. Norwegian Journal of Agricultural Sciences, 1994,12:1-128. |
[76] |
Hoyle F C, Murphy D V, Fillery I R P. Temperature and stubble management influence microbial CO2-C evolution and gross N transformation rates[J]. Soil Biology and Biochemistry, 2005,38(1):71-80.
doi: 10.1016/j.soilbio.2005.04.020 URL |
[77] |
Rochette P, Angers D A, Chantigny M H, et al. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures[J]. Canadian Journal of Soil Science, 2008,88(2):175-187.
doi: 10.4141/CJSS06016 URL |
[78] |
Kuiper I, Deyn G B, Thakur M P, et al. Soil invertebrate fauna affect N2O emissions from soil[J]. Global Change Biology, 2013,19(9):2814-2825.
doi: 10.1111/gcb.2013.19.issue-9 URL |
[1] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. |
[2] | 田雨桐, 韩志伟, 赵然, 田永著, 罗广飞, 杨淼. 西南岩溶农业区典型土地利用对土壤氮素特征的影响[J]. 中国农学通报, 2022, 38(33): 89-96. |
[3] | 王志强, 杨建锋, 石天池. 宁夏石嘴山地区主要粮食作物铜含量特征及影响因素分析[J]. 中国农学通报, 2022, 38(32): 45-54. |
[4] | 郎漫, 袁晓航, 李平. 不同施氮水平对农田黑土净氮转化速率和温室气体排放的影响[J]. 中国农学通报, 2022, 38(31): 93-100. |
[5] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. |
[6] | 张楠, 潘仕球, 乔云发, 朱保国, 苗淑杰. 秸秆还田及添加生物炭对黑土玉米生长季N2O排放的影响[J]. 中国农学通报, 2022, 38(27): 79-85. |
[7] | 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 2022, 38(26): 9-14. |
[8] | 廖雨梦, 李祖然, 祖艳群, 刘才鑫. 植物对重金属迁移途径及其影响因素的研究进展[J]. 中国农学通报, 2022, 38(24): 63-69. |
[9] | 胡洁思, 张建国. 基于SBE和SD法的乡村滨水景观带美景度影响因素研究——以衢州庙源溪为例[J]. 中国农学通报, 2022, 38(22): 69-78. |
[10] | 骆美, 郭龙, 费坤, 张天恩, 李陈, 马友华. 耕地质量提升技术及其应用[J]. 中国农学通报, 2022, 38(21): 76-81. |
[11] | 张羽丰, 孙江涛, 李青松, 范利瑶, 文倩. 豫东农区农户宅基地退出意愿及影响因素分析——以扶沟县为例[J]. 中国农学通报, 2022, 38(2): 150-156. |
[12] | 佟帆, 魏琳, 刘绪军, 任宪平, 李志飞, 王平, 郝燕芳. 东北黑土区植被配置的土壤抗冲性研究[J]. 中国农学通报, 2022, 38(2): 44-51. |
[13] | 赵颖, 王飞. 白洋淀湿地CH4和CO2排放特征及其影响因素初探[J]. 中国农学通报, 2022, 38(2): 63-70. |
[14] | 张含, 龚敏, 石汝杰. 重庆市蔬菜地土壤硒含量及其影响因素分析[J]. 中国农学通报, 2022, 38(19): 114-119. |
[15] | 王敏, 段海燕, 姜恭好, 李忠梅. 水稻花药培养技术的研究进展[J]. 中国农学通报, 2022, 38(14): 18-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||