中国农学通报 ›› 2021, Vol. 37 ›› Issue (15): 78-86.doi: 10.11924/j.issn.1000-6850.casb2020-0441
收稿日期:
2020-09-08
修回日期:
2020-10-09
出版日期:
2021-05-25
发布日期:
2021-05-18
通讯作者:
李建刚
作者简介:
刘洪,男,1993年出生,湖北赤壁人,在读博士,研究方向:植物土传病害的营养生态调控研究。通信地址:210008 江苏省南京市北京东路71号 中国科学院南京土壤研究所,Tel:025-86881370,E-mail: 基金资助:
Liu Hong1,2(), Dong Yuanhua1, Sui Yueyu3, Li Jiangang1(
)
Received:
2020-09-08
Revised:
2020-10-09
Online:
2021-05-25
Published:
2021-05-18
Contact:
Li Jiangang
摘要:
本研究以甜菜和根腐病为研究对象,分析了不同品种以及不同发病程度甜菜中土壤微生物群落组成、结构以及功能的变化,以期获得抗性品种、发病程度和根际微生物相互间的关系,揭示抗病品种的土壤微生物机制。利用抗病型和感病型两种甜菜品种作为研究对象,并从2种品种中分别选取了发病轻和发病重的甜菜根际土壤样品,通过Illumina MiSeq高通量测序技术对根际土壤细菌和真菌群落进行测定。结果发现:发病较轻的甜菜根际土壤微生物(细菌和真菌)和抗病型甜菜根际土壤真菌的多样性相对较高。NMDS分析表明甜菜品种能显著影响土壤真菌的群落结构,而发病程度则能同时明显改变细菌与真菌的群落结构。在根际微生物富集方面,抗病型甜菜根际富集了假单胞菌(Pseudomonas)、节杆菌(Arthrobacter)、芽孢杆菌(Bacillus)等有益细菌,而感病型甜菜中则富集了较多的病原微生物-尖孢镰刀菌(Fusarium oxysporum)。另外,发病较轻样品中富集了较多的未分类的酸杆菌纲属、芽孢杆菌(Bacillus)、红色杆菌属(Rubrobacter)、未分类的放线菌纲属、链霉菌属(Streptomyces)、类诺卡氏属(Nocardioides)等有益细菌。除此以外,FUNGuild功能预测表明,感病型甜菜和发病较重样品中检测到更多的植物病原菌。抗病品种和健康植株根际微生物虽然在种类上不同,但是其根际均聚集了大量的有益微生物,而感病型品种和发病严重植株则更容易在根围定殖病原微生物。抗病品种的抗病机理之一是植物生长过程中招募了更多的有益细菌作为抵御病原菌的侵染第一道防线。本研究从土壤微生物组的角度对抗病品种抗性机制进行了阐明,充实了抗病品种抗性产生的理论机制。
中图分类号:
刘洪, 董元华, 隋跃宇, 李建刚. 甜菜抗病品种产生抗性的土壤微生物机理[J]. 中国农学通报, 2021, 37(15): 78-86.
Liu Hong, Dong Yuanhua, Sui Yueyu, Li Jiangang. Soil Microbial Mechanism of Disease Resistant Sugar Beet Variety[J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 78-86.
统计指标 | 抗病品种(PT) | 感病品种(ST) | |||
---|---|---|---|---|---|
发病轻(PTL) | 发病重(PTH) | 发病轻(STL) | 发病重(STH) | ||
pH | 6.55±0.02d | 6.91±0.04b | 6.69±0.04c | 7.03±0.02a | |
有机碳/% | 1.56±0.05a | 1.52±0.02ab | 1.51±0.03ab | 1.43±0.01c | |
全氮/% | 0.149±0.001b | 0.160±0.001a | 0.146±0.002bc | 0.143±0.002c | |
全磷/% | 0.973±0.053a | 0.800±0.003b | 0.794±0.043b | 0.800±0.032b | |
全钾/% | 0.947±0.027b | 0.905±0.006b | 0.893±0.002b | 1.063±0.051a | |
硝态氮/(mg/kg) | 4.08±0.02c | 6.18±0.02b | 3.93±0.01d | 7.36±0.04a | |
铵态氮/(mg/kg) | 0.52±0.08a | 0.38±0.02b | 0.27±0.04b | 0.36±0.04b | |
有效磷/(mg/kg) | 21.77±0.08a | 8.37±0.08c | 12.10±0.08b | 8.99±0.97c | |
有效钾/(mg/kg) | 27.63±0.68c | 47.30±0.52a | 26.73±1.08c | 39.53±0.58b |
统计指标 | 抗病品种(PT) | 感病品种(ST) | |||
---|---|---|---|---|---|
发病轻(PTL) | 发病重(PTH) | 发病轻(STL) | 发病重(STH) | ||
pH | 6.55±0.02d | 6.91±0.04b | 6.69±0.04c | 7.03±0.02a | |
有机碳/% | 1.56±0.05a | 1.52±0.02ab | 1.51±0.03ab | 1.43±0.01c | |
全氮/% | 0.149±0.001b | 0.160±0.001a | 0.146±0.002bc | 0.143±0.002c | |
全磷/% | 0.973±0.053a | 0.800±0.003b | 0.794±0.043b | 0.800±0.032b | |
全钾/% | 0.947±0.027b | 0.905±0.006b | 0.893±0.002b | 1.063±0.051a | |
硝态氮/(mg/kg) | 4.08±0.02c | 6.18±0.02b | 3.93±0.01d | 7.36±0.04a | |
铵态氮/(mg/kg) | 0.52±0.08a | 0.38±0.02b | 0.27±0.04b | 0.36±0.04b | |
有效磷/(mg/kg) | 21.77±0.08a | 8.37±0.08c | 12.10±0.08b | 8.99±0.97c | |
有效钾/(mg/kg) | 27.63±0.68c | 47.30±0.52a | 26.73±1.08c | 39.53±0.58b |
微生物 | 品种 | 病情 | Richness | Shannon | Chao 1 | Faith_pd |
---|---|---|---|---|---|---|
细菌 | 抗病品种(PT) | 发病轻(PTL) | 930±12a | 8.35±0.05a | 974±14a | 44.41±1.21a |
发病重(PTH) | 906±12a | 8.06±0.11a | 989±18a | 44.18±1.20a | ||
感病品种(ST) | 发病轻(STL) | 892±7a | 8.09±0.16a | 947±10a | 44.67±0.39a | |
发病重(STH) | 924±5a | 8.22±0.03a | 970±4a | 42.60±0.33a | ||
真菌 | 抗病品种(PT) | 发病轻(PTL) | 723±16a | 6.27±0.32a | 898±3.52a | 124.27±2.92a |
发病重(PTH) | 580±44b | 5.58±0.34a | 725±39b | 107.70±8.71a | ||
感病品种(ST) | 发病轻(STL) | 653±44ab | 6.17±0.51a | 780±34ab | 116.53±6.39a | |
发病重(STH) | 564±24b | 4.95±0.49a | 740±29b | 105.37±3.27a |
微生物 | 品种 | 病情 | Richness | Shannon | Chao 1 | Faith_pd |
---|---|---|---|---|---|---|
细菌 | 抗病品种(PT) | 发病轻(PTL) | 930±12a | 8.35±0.05a | 974±14a | 44.41±1.21a |
发病重(PTH) | 906±12a | 8.06±0.11a | 989±18a | 44.18±1.20a | ||
感病品种(ST) | 发病轻(STL) | 892±7a | 8.09±0.16a | 947±10a | 44.67±0.39a | |
发病重(STH) | 924±5a | 8.22±0.03a | 970±4a | 42.60±0.33a | ||
真菌 | 抗病品种(PT) | 发病轻(PTL) | 723±16a | 6.27±0.32a | 898±3.52a | 124.27±2.92a |
发病重(PTH) | 580±44b | 5.58±0.34a | 725±39b | 107.70±8.71a | ||
感病品种(ST) | 发病轻(STL) | 653±44ab | 6.17±0.51a | 780±34ab | 116.53±6.39a | |
发病重(STH) | 564±24b | 4.95±0.49a | 740±29b | 105.37±3.27a |
微生物 | 处理 | PERMANOVA | MRPP | ANOSIM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | R2 | P | δ | P | R | P | ||||
细菌 | 所有样品 | 4.1178 | 0.6069 | 0.001 | 0.2837 | 0.001 | 0.5957 | 0.001 | ||
品种 | 1.3314 | 0.1175 | 0.238 | 0.3829 | 0.135 | 0.06481 | 0.176 | |||
致病状态 | 6.4952 | 0.39376 | 0.007 | 0.3184 | 0.005 | 0.6204 | 0.004 | |||
真菌 | 所有样品 | 2.5362 | 0.4875 | 0.002 | 0.4951 | 0.001 | 0.6296 | 0.001 | ||
品种 | 1.3677 | 0.1203 | 0.181 | 0.5751 | 0.117 | 0.1296 | 0.119 | |||
致病状态 | 3.5073 | 0.2597 | 0.006 | 0.5321 | 0.003 | 0.5333 | 0.002 |
微生物 | 处理 | PERMANOVA | MRPP | ANOSIM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | R2 | P | δ | P | R | P | ||||
细菌 | 所有样品 | 4.1178 | 0.6069 | 0.001 | 0.2837 | 0.001 | 0.5957 | 0.001 | ||
品种 | 1.3314 | 0.1175 | 0.238 | 0.3829 | 0.135 | 0.06481 | 0.176 | |||
致病状态 | 6.4952 | 0.39376 | 0.007 | 0.3184 | 0.005 | 0.6204 | 0.004 | |||
真菌 | 所有样品 | 2.5362 | 0.4875 | 0.002 | 0.4951 | 0.001 | 0.6296 | 0.001 | ||
品种 | 1.3677 | 0.1203 | 0.181 | 0.5751 | 0.117 | 0.1296 | 0.119 | |||
致病状态 | 3.5073 | 0.2597 | 0.006 | 0.5321 | 0.003 | 0.5333 | 0.002 |
[1] | 韩秉进, 朱向明. 我国甜菜生产发展历程及现状分析[J]. 土壤与作物, 2016,5(02):91-95. |
[2] | 张建平. 额敏糖区甜菜主要病害发生特点及防控措施[J]. 农村科技, 2020(01):24-26. |
[3] | 王文君, 赵灿, 刘梅, 等. 我国甜菜根腐病病原镰刀菌的初步研究[A]. 中国植物病理学会.中国植物病理学会2011年学术年会论文集[C].中国植物病理学会:中国植物病理学会, 2011:1. |
[4] |
Pérez-Jaramillo J E, Mendes R, Raaijmakers J M. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Mol Biol, 2016,90:635-644.
doi: 10.1007/s11103-015-0337-7 URL |
[5] |
Smith K P, Handelsman J. Genetic basis in plants for interactions with disease-suppressive bacteria[J]. Proc. Natl. Acad. Sci. USA. 1999,96:4786-4790.
doi: 10.1073/pnas.96.9.4786 URL |
[6] |
Smith K P, Goodman R M. Host variation for interactions with beneficial plant-associated microbes[J]. Annu. Rev. Phytopathol, 1999,37:473-491.
doi: 10.1146/annurev.phyto.37.1.473 URL |
[7] |
Wissuwa M, Mazzola M, Picard C. Novel approaches in plant breeding for rhizosphere-related traits[J]. Plant Soil, 2009,321(1-2):409-430.
doi: 10.1007/s11104-008-9693-2 URL |
[8] |
Xiong W, Li R, Ren Y, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease[J]. Soil Biol. Biochem, 2017,107:198-207.
doi: 10.1016/j.soilbio.2017.01.010 URL |
[9] |
Mendes R, Kruijt M, Bruijn I D, et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria[J]. Science, 2011,332(6033):1097-100.
doi: 10.1126/science.1203980 URL |
[10] | Chapelle E, Mendes R, Bakker P, et al. Fungal invasion of the rhizosphere microbiome[J]. ISME J. 2015,10. |
[11] |
Raaijmakers J M, Mazzola M. Soil immune responses[J]. Science, 2016,352(6292):1392-1393.
doi: 10.1126/science.aaf3252 URL |
[12] |
Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiol Rev, 2013,37(5):634-663.
doi: 10.1111/1574-6976.12028 URL |
[13] |
Philippot L, Raaijmakers J M, Lemanceau P, et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nat Rev Microbiol, 2013,11(11):789-799.
doi: 10.1038/nrmicro3109 URL |
[14] | Berg G, Grube M, Schloter M, et al. Unraveling the plant microbiome: looking back and future perspectives[J]. Front Microbiol, 2014,5(148):148. |
[15] |
Yao H, Wu F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt[J]. FEMS Microbiol Ecol, 2010,72(3):456-463.
doi: 10.1111/fem.2010.72.issue-3 URL |
[16] | Lu R. Analytical methods of soil agrochemistry[J]. China Agricultural Science and Technology Publishing House, Beijing, China, 1999:18-99. |
[17] | Caporaso J G, Kuczynski J, Knight R, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010,7(5):335-336. |
[18] |
Clarke K R. Non-parametric multivariate analyses of changes in community structure[J]. Aust J Ecol, 1993,18(1):117-143.
doi: 10.1111/aec.1993.18.issue-1 URL |
[19] | Parks D H, Tyson G W, Philip H, et al. STAMP: statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 2014(21):21. |
[20] |
Trivedi P, Delgado-Baquerizo M, Trivedi C, et al. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems[J]. Soil Biol. Biochem, 2017,111:10-14.
doi: 10.1016/j.soilbio.2017.03.013 URL |
[21] |
Wang R, Zhang H, Sun L, et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Sci Rep, 2017,7(1):343.
doi: 10.1038/s41598-017-00472-6 URL |
[22] |
Shen Z, Xue C, Penton C R, et al. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy[J]. Soil Biol. Biochem, 2019,128:164-174.
doi: 10.1016/j.soilbio.2018.10.016 URL |
[23] |
Knotek-Smith H M, Crawford D L, Moller G, et al. Microbial studies of a selenium-contaminated mine site and potential for on-site remediation[J]. J Ind. Microbiol. Biot, 2006,33(11):897-913.
pmid: 16804682 |
[24] |
Hu Q, Tan L, Deng Y, et al. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria[J]. npj Biofilms and Microbiomes, 2020,6(1):8.
doi: 10.1038/s41522-020-0117-2 URL |
[25] |
Mendes L, Raaijmakers J, Hollander M, et al. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function[J]. ISME J, 2017,12:212-224.
doi: 10.1038/ismej.2017.158 URL |
[26] | Wei Z, Gu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Sci. Adv, 2019,5(9):eaaw0759-eaaw0759. |
[27] |
Wei Z, Hu J, Shen Q, et al. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion[J]. Soil Biol. Biochem, 2017,118:8-17.
doi: 10.1016/j.soilbio.2017.11.012 URL |
[28] |
Wang R, Xiao Y, Lv F, et al. Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping[J]. Appl. Soil Ecol, 2017,125:117-127.
doi: 10.1016/j.apsoil.2017.12.014 URL |
[29] |
Siegel-Hertz K, Edel-Hermann V, Chapelle E, et al. Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region[J]. Front Microbiol, 2018,9:568.
doi: 10.3389/fmicb.2018.00568 pmid: 29670584 |
[30] |
Rouphael Y, Franken P, Schneider C, et al. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops[J]. Sci. Hortic, 2015,196:91-108.
doi: 10.1016/j.scienta.2015.09.002 URL |
[31] |
Schisler D A, Slininger P, Behle R, et al. Formulation of Bacillus spp. for Biological Control of Plant Diseases[J]. Phytopathology, 2004,94:1267-1271.
doi: 10.1094/PHYTO.2004.94.11.1267 pmid: 18944465 |
[32] |
Al-Mughrabi K. Biological control of Fusarium dry rot and other potato tuber diseases using Pseudomonas fluorescens and Enterobacter cloacae[J]. Biol. Control, 2010,53:280-284.
doi: 10.1016/j.biocontrol.2010.01.010 URL |
[33] |
Rosier A, Bishnoi U, Lakshmanan V, et al. A perspective on inter-kingdom signaling in plant-beneficial microbe interactions[J]. Plant Mol Biol, 2016,90:537-54.
doi: 10.1007/s11103-016-0433-3 URL |
[34] | Nguyen N H, Song Z, Bates S T, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecol, 2016,20:241-248. |
[1] | 孙树晴, 丁炜, 孙瑞, 张希财, 兰国玉, 陈伟, 杨川, 吴志祥. 不同林龄橡胶林土壤细菌群落组成及多样性研究[J]. 中国农学通报, 2022, 38(9): 93-100. |
[2] | 陈道, 王新, 江山, 张洁, 吴祖建, 丁新伦. 福建地区草莓斑驳病毒全基因组测序和分子变异分析[J]. 中国农学通报, 2022, 38(6): 94-101. |
[3] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. |
[4] | 刘琪, 高志强, 杨珍平, 乔月静. 合理氮肥用量改善冬小麦土壤耕层细菌群落结构及理化性质研究[J]. 中国农学通报, 2022, 38(30): 77-84. |
[5] | 陈柳宏, 赵春雷, 王希, 李彦丽, 丁广洲, 陈丽. 单细胞转录组测序技术及其在植物研究中的应用[J]. 中国农学通报, 2022, 38(3): 87-93. |
[6] | 张河庆, 吴婕, 韩帅, 席亚东, 李跃建, 梁根云. 4种周年轮作模式对耕作层土壤微生物的影响[J]. 中国农学通报, 2022, 38(20): 73-80. |
[7] | 张倩, 张国威, 商侃侃. 不同强化处理措施对铜污染土壤微生物多样性的影响[J]. 中国农学通报, 2022, 38(14): 96-103. |
[8] | 姜莉莉, 郭腾达, 宫庆涛, 武海斌, 孙瑞红. 不同物候期晚熟桃‘秋彤’微生物群落结构分析[J]. 中国农学通报, 2022, 38(1): 44-52. |
[9] | 万人源, 马会杰, 蒋宾, 杨丽冉, 周大鹏, 和明珠, 杨广容. 茶园土壤真菌群落组成及影响因素研究[J]. 中国农学通报, 2021, 37(33): 88-97. |
[10] | 聂志娟, 邵乃磷, 张志伟, 胡佳雯, 徐跑, 徐钢春. 两种养殖模式下黑鲷肠道及养殖水体菌群结构特征的研究[J]. 中国农学通报, 2021, 37(27): 155-164. |
[11] | 高小宁, 吴自林, 黄咏虹, 刘睿, 齐永文. 甘蔗叶片响应褐锈病菌(Puccinia melanocephala)侵染的转录组分析[J]. 中国农学通报, 2021, 37(24): 102-109. |
[12] | 袁源, 李琳, 黄海辰, 刘国辉, 谢福泉, 傅俊生, 吴小平. 基于16S rDNA扩增子测序分析灵芝连作覆土细菌群落的变化[J]. 中国农学通报, 2021, 37(24): 116-123. |
[13] | 范娜, 彭之东, 白文斌. 基于高通量测序的土壤细菌组成、丰度及多样性分析[J]. 中国农学通报, 2021, 37(20): 66-70. |
[14] | 程智超, 吴文彦, 宋永辉, 隋心, 李梦莎, 杨立宾. 城市生活垃圾堆放对土壤细菌群落结构和功能的影响[J]. 中国农学通报, 2021, 37(17): 72-79. |
[15] | 陈罡, 于世河, 姜义仁, 卜鹏图, 郑颖, 冯健. 基于高通量测序方法的蒙古栎SSR标记开发[J]. 中国农学通报, 2021, 37(16): 13-17. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 404
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||