 
 中国农学通报 ›› 2021, Vol. 37 ›› Issue (15): 72-77.doi: 10.11924/j.issn.1000-6850.casb2020-0416
        
               		方雅各( ), 苏有健, 廖万有, 张永利, 罗毅, 孙宇龙, 廖珺, 王烨军(
), 苏有健, 廖万有, 张永利, 罗毅, 孙宇龙, 廖珺, 王烨军( )
)
                  
        
        
        
        
    
收稿日期:2020-08-31
									
				
											修回日期:2020-12-30
									
				
									
				
											出版日期:2021-05-25
									
				
											发布日期:2021-05-18
									
			通讯作者:
					王烨军
							作者简介:方雅各,男,1992年出生,安徽桐城人,研究实习员,硕士,研究方向:茶园氮循环。通信地址:245000 安徽黄山屯溪区鬲山大道28号 安徽省农业科学院茶叶研究所,Tel:0559-2591977,E-mail: 基金资助:
        
               		Fang Yage( ), Su Youjian, Liao Wanyou, Zhang Yongli, Luo Yi, Sun Yulong, Liao Jun, Wang Yejun(
), Su Youjian, Liao Wanyou, Zhang Yongli, Luo Yi, Sun Yulong, Liao Jun, Wang Yejun( )
)
			  
			
			
			
                
        
    
Received:2020-08-31
									
				
											Revised:2020-12-30
									
				
									
				
											Online:2021-05-25
									
				
											Published:2021-05-18
									
			Contact:
					Wang Yejun  			     					     	
							摘要:
茶园土壤通过微生物作用释放大量氧化亚氮(N2O),因此需迫切了解茶园土壤N2O产生机制及影响因素,以期为茶园土壤N2O减排提供理论依据。从氮源、有机质、pH、水分、温度、质地等角度对茶园土壤N2O排放的影响进行综述,提出相应的N2O减排措施。对以上影响因素阐述发现:反硝化作用对茶园土壤N2O排放的贡献较大;氮肥施用、土壤理化性质、气象因子等是茶园土壤N2O排放的关键因素。施用缓释氮肥、氮肥深施、采用氮肥推荐施用量、养分有机替代技术能降低茶园土壤N2O排放。
中图分类号:
方雅各, 苏有健, 廖万有, 张永利, 罗毅, 孙宇龙, 廖珺, 王烨军. 茶园土壤N2O排放的影响因素及减排措施[J]. 中国农学通报, 2021, 37(15): 72-77.
Fang Yage, Su Youjian, Liao Wanyou, Zhang Yongli, Luo Yi, Sun Yulong, Liao Jun, Wang Yejun. Influencing Factors of N2O Emission from Tea Garden Soil and Emission Reduction Measures[J]. Chinese Agricultural Science Bulletin, 2021, 37(15): 72-77.
| [1] | IPCC. Climate change 2013: the physical science basis[M]. Cambridge, UK and New York, USA: Cambridge University Press, 2013:714. | 
| [2] | United Nations Environment Programmed (UNEP). Drawing down N2O to protect climate and the ozone layer: A UNEP synreport report[R]. Kenya: Nairobi, 2013:1-57. | 
| [3] | Prinn R G, Weiss R F, Arduini J, et al. History of chemically and radioactively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment(AGAGE)[J]. Earth System Science Data, 2018,10(2):985-1018. doi: 10.5194/essd-10-985-2018 URL | 
| [4] | Tian H Q, Yang J, Xu R T, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty[J]. Global Change Biology, 2019,25(2):640-659. doi: 10.1111/gcb.2019.25.issue-2 URL | 
| [5] | FAO. World agriculture: Towards 2015/2030. An FAO perspective, FAO[R]. Rome,Italy, 2013. | 
| [6] | Amélie A M C, Juliette M G B, Nicolas D, et al. Effects of Climate Change Drivers on Nitrous Oxide Fluxes in an Upland Temperate Grassland[J]. Ecosystems, 2011,14(2):223-233. doi: 10.1007/s10021-010-9405-7 URL | 
| [7] | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. | 
| [8] | FAO. FAOSTAT:Faostat agriculture data[EB/OL].[2019-12-17]. http://www.fao.Org/faostat/en/#data. | 
| [9] | Cui Z L, Wang G L, Yue S C, et al. Closing the N-use efficiency gap to achieve food and environmental security[J]. Environment Science & Technology, 2014,48(10):5780-5787. doi: 10.1021/es5007127 URL | 
| [10] | 姚志生, 王燕, 王睿, 等. 中国茶园N2O排放及其影响因素[J]. 农业环境科学学报, 2020,39(04), 715-725. | 
| [11] | 何甜甜, 刘天, 云菲, 等. 生物炭对农田N2O排放的影响机制研究[J/OL]. 中国农业科技导报:1-9[2020-09-28]. https://doi.org/10.13304/j.nykjdb.2019.1081. | 
| [12] | Liu Q H, Qin Y M, Zou J W, et al. Annual nitrous oxide emissions from open-air and greenhouse vegetable cropping systems in China[J]. Plant and Soil, 2013,370(1-2):223-233. doi: 10.1007/s11104-013-1622-3 URL | 
| [13] | Jumadi O, Hala Y, Inubushi K. Production and emission of nitrous oxide and responsible microorganisms in upland acid soil in Indonesia[J]. Soil Science and Plant Nutrition, 2005,51(5):693-696. doi: 10.1111/j.1747-0765.2005.tb00093.x URL | 
| [14] | Yue Q, Wu H, Sun J F, et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China[J]. Environment Science & Technology, 2019,53(17):10246-10257. doi: 10.1021/acs.est.9b01285 URL | 
| [15] | 刘美雅, 伊晓云, 石元值, 等. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 2015,35(02):110-120. | 
| [16] | 李欣雨, 夏建国, 田汶艳. 稻田植茶后土壤团聚体水稳性变化特征及影响因素分析[J]. 水土保持学报, 2017,31(04):148-153,204. | 
| [17] | 王晟强, 郑子成, 李廷轩. 植茶年限对土壤团聚体氮、磷、钾含量变化的影响[J]. 植物营养与肥料学报, 2013,19(06):1393-1402. | 
| [18] | 母媛, 袁大刚, 兰永生, 等. 植茶年限对土壤pH值、有机质与酚酸含量的影响[J]. 中国土壤与肥料, 2016,4:44-48. | 
| [19] | 杨佳, 郑子成, 李廷轩. 不同植茶品种土壤团聚体及其全铝和交换态铝的分布特征[J]. 农业环境科学学报, 2019,38(03):583-589. | 
| [20] | Butterbachbahl K, Baggs E M, Dannenmann M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls?[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013,368(1621):1-13. | 
| [21] | 张珂彬, 王毅, 刘新亮, 等. 茶园氧化亚氮排放机制及减排措施研究进展[J]. 生态与农村环境学报, 2020,36(04):413-424. | 
| [22] | Hayatsu, Masahito. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J]. Soil Science and Plant Nutrition, 1993,39(2):219-226. doi: 10.1080/00380768.1993.10416993 URL | 
| [23] | Xue D, Gao Y M, Yao H Y, et al. Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils[J]. Journal of Environmental Sciences, 2009,21(9):1225-1229. doi: 10.1016/S1001-0742(08)62408-0 URL | 
| [24] | 黄莹, 李雅颖, 姚槐应. 强酸性茶园土壤中添加不同肥料氮后N2O释放量变化[J]. 植物营养与肥料学报, 2013,19(06):1533-1538. | 
| [25] | Nägele W, Conrad R. Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N2O[J]. FEMS Microbiology Reviews, 1990,74(1):49-57. | 
| [26] | Pansombat K, Kanazawa S, Horiguchi T. Microbial ecology in tea soils Ⅱ. Soil protease activity[J]. Soil Science and Plant Nutrition, 1997,43(2):431-438. doi: 10.1080/00380768.1997.10414766 URL | 
| [27] | Toduda S, Hayatsu M. Nitrous oxide production from strongly acid tea field soils[J]. Soil Science and Plant Nutria, 2000,46(4):835-844. | 
| [28] | Rütting T, Huygens D, Boeckx P, et al. Increased fungal dominance in N2O emission hotspots along a natural pH gradient in organic forest soil[J]. Biology and Fertility of Soils, 2013,49(6):715-721. doi: 10.1007/s00374-012-0762-6 URL | 
| [29] | Huang Y, Xiao X, Long X. Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil[J]. Journal of Soils and Sediment, 2017,17(6):1599-1606. doi: 10.1007/s11368-017-1655-y URL | 
| [30] | Chen D, Li Y, Wang C, et al. Measurement and modeling of nitrous and nitric oxide emissions from a tea field in subtropical central China[J]. Nutrient Cycling in Agroecosystems, 2017,107(2):157-173. doi: 10.1007/s10705-017-9826-1 URL | 
| [31] | 周丰, 崔晓庆, 尚子吟, 等. 农田N2O排放时空格局的形成机理和全球评估[J]. 农业环境科学学报, 2020,39(04):680-690. | 
| [32] | 林衣东, 韩文炎. 不同土壤N2O 排放的研究[J]. 茶叶科学, 2009,29(6):456-464. | 
| [33] | 王峰, 陈玉真, 尤志明, 等. 茶园土壤氮含量、施氮效应及其N2O排放的研究进展[J]. 福建农业学报, 2014,29(10):1045-1050. | 
| [34] | 殷欣, 田亚男, 谢琪, 等. 尿素及秸秆添加对华中地区茶园土壤CO2和N2O排放的影响[J]. 中国农学通报, 2015,31(36):211-219. | 
| [35] | 何志龙, 周维, 田亚男, 等. 中亚热带丘陵区茶园和林地土壤春季N2O排放及其影响因素[J]. 农业环境科学学报, 2016,35(6):1210-1217. | 
| [36] | 吕天新, 伍延正, 沈健林, 等. 氮肥深施及间种白三叶草对茶园N2O排放的影响[J]. 应用生态学报, 2019,40(9):4221-4229. | 
| [37] | 田亚男, 何志龙, 吕昭琪, 等. 凋落茶叶对华中地区酸化茶园土壤N2O与CO2排放的影响[J]. 农业环境科学学报, 2016,35(8):1625-1632. | 
| [38] | 阮建云, 马立锋, 伊晓云, 等. 茶树养分综合管理与减肥增效技术研究[J]. 茶叶科学, 2020,40(01):85-95. | 
| [39] | 王峰, 陈玉真, 吴志丹, 等. 我国典型茶区化学氮肥施用与生产运输过程的温室气体排放量估算[J]. 茶叶科学, 2020,40(02):205-214. | 
| [40] | Tokuda S, Haystsu M. Nitrous oxide flux from a tea field amended with a aarge amount of nitrogen fertilizer and soil environmental factors controlling the flux[J]. Soil Science and Plant Nutrition, 2004,50(3):365-374. doi: 10.1080/00380768.2004.10408490 URL | 
| [41] | Giguere A T, Taylor A E, Suwa Y C, et al. Uncoupling of ammonia oxidation from nitrite oxidation: Impact upon nitrous oxide production in non-cropped Oregon soils[J]. Soil Biology and Biochemistry, 2017,104:30-38. doi: 10.1016/j.soilbio.2016.10.011 URL | 
| [42] | Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(25):9199-9204. doi: 10.1073/pnas.1322434111 pmid: 24927583 | 
| [43] | Song X T, Liu M, Ju X T, et al. Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China Plain[J]. Environmental Science & Technology, 2018,52(21):12504-12513. doi: 10.1021/acs.est.8b03931 URL | 
| [44] | Meihua D, Mudan H, Naoko O O, et al. Nitrous Oxide Emission From Organic Fertilizer and Controlled Release Fertilizer in Tea Fields[J]. Agriculture, 2017,7(3):29-40. doi: 10.3390/agriculture7030029 URL | 
| [45] | Wu Y Z, Li Y, Fu X Q, et al. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical central China[J]. Environmental Science and Pollution Research, 2018,25:25580-25590. doi: 10.1007/s11356-018-2646-2 URL | 
| [46] | Huang Y, Li Y Y, Yao H Y. Nitrate enhances N2O emission more than ammonium in a highly acidic soil[J]. Journal of Soils and Sediments, 2014,14(1):146-154. doi: 10.1007/s11368-013-0785-0 URL | 
| [47] | Hirono, Nonaka. Effects of application of lime nitrogen and dicyandiamide on nitrous oxide emissions from green tea fields[J]. Soil Science and Plant Nutrition, 2014,60(2):276-285. doi: 10.1080/00380768.2014.890015 URL | 
| [48] | Yamamoto A, Akiyama H, Naokawa T, et al. Lime-nitrogen application affects nitrification, denitrification, and N2O Emission in an acidic tea soil[J]. Biology and Fertility of Soils, 2014,50(1):53-62. doi: 10.1007/s00374-013-0830-6 URL | 
| [49] | 张振梅, 石元值, 马立锋, 等. 采摘标准与施氮水平对茶树春茶产量、品质及氮素利用的影响[J]. 茶叶科学, 2015,34(5):506-514. | 
| [50] | 马立锋, 苏孔武, 黎金兰, 等. 控释氮肥对茶叶产量、品质和氮素利用效率及经济效益的影响[J]. 茶叶科学, 2015,34(4):354-362. | 
| [51] | 吴志丹, 尤志明, 江福英, 等. 配施有机肥对茶园土壤性状及茶叶产质量的影响[J]. 土壤, 2016,47(5):874-879. | 
| [52] | 曹文超, 宋贺, 王娅静, 等. 农田土壤N2O 排放的关键过程及影响因素[J]. 植物营养与肥料学报, 2019,25(10):1781-1798. | 
| [53] | Nguyen C. Rhizodeposition of organic C by plants: mechanisms and controls[J]. Agronomy for Sustainable Development, 2003,23(5-6):375-396. | 
| [54] | Højberg O, Binnerup S J, Sørensen J. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere[J]. Soil Biology and Biochemistry, 1996,28(1):47-54. doi: 10.1016/0038-0717(95)00119-0 URL | 
| [55] | Mahmood T, Ali R, Malik K A, et al. Denitrification with and without maize plants (Zeal mays L.) under irrigated field conditions[J]. Biology and Fertility of Soils, 1997,24(3):323-328. doi: 10.1007/s003740050251 URL | 
| [56] | Jensen L S, Schjørring J K, Dammgaard-Poulsen H, et al. Benefits of nitrogen for food, fiber and industrial production[M]. Oxford city: Cambridge University Press, 2011:32-61. | 
| [57] | Fu X Q, Li Y, Shen J L, et al. Annual dynamics of N2O emissions from a tea field in southern subtropical China[J]. Plant,Soil and Environment, 2012,64:373-378. | 
| [58] | Cayuela M L, Sánchez-Monedero M A, Roig A, et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?[J]. Scientific Reports, 2013,3:1732-1738. doi: 10.1038/srep01732 pmid: 23615819 | 
| [59] | Lan Z M, Chen C R, Rashti M R, et al. High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil[J]. Global Change Biology Bioenergy, 2018,10(12):930-945. doi: 10.1111/gcbb.2018.10.issue-12 URL | 
| [60] | Oo A Z, Sudo S, Win K T, et al. Returning Tea Pruning Residue and Its Biochar Had a Contrasting Effect on Soil N2O and CO2 Emissions From Tea Plantation Soil[J]. Atmosphere, 2018,9(3):1-16. | 
| [61] | 孙贇, 何志龙, 林杉, 等. 不同生物质炭对酸化茶园土壤N2O和CO2排放的影响[J]. 农业环境科学学报, 2017,36(12):2544-2552. | 
| [62] | 蔡延江, 丁维新, 项剑. 土壤N2O和NO产生机制研究进展[J]. 土壤, 2012,44(5):712-718. | 
| [63] | Baggs E M, Smales B C, Bateman E J. Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil[J]. Biology and Fertility of Soils, 2010,46:793-809. doi: 10.1007/s00374-010-0484-6 URL | 
| [64] | Qu Z, Wang J G, Almøy T, et al. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils[J]. Global Change Biology, 2014,20(5):1685-1698. doi: 10.1111/gcb.2014.20.issue-5 URL | 
| [65] | Russenes A L, Korsaeth A, Bakken L R, et al. Spatial variation in soil pH controls off-season N2O emission in an agricultural soil[J]. Soil Biology and Biochemistry, 2016,99:36-46. doi: 10.1016/j.soilbio.2016.04.019 URL | 
| [66] | Chen H H, Mothapo N V, Shi W. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production[J]. Microbial Ecology, 2015,69(1):180-191. doi: 10.1007/s00248-014-0488-0 URL | 
| [67] | 谢立勇, 叶丹丹, 张贺, 等. 旱地土壤温室气体排放影响因子及减排增汇措施分析[J]. 中国农业气象, 2011,32(4):481-487. | 
| [68] | 陈玉真, 王峰, 尤志明, 等. 添加生物黑炭对茶园土壤CO2、N2O 排放的影响[J]. 农业环境科学学报, 2015,34(5):1009-1016. | 
| [69] | Zaw O A, Shigeto S, Hiroko A, et al. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil[J]. Plos One, 2018,13(2):e0192235. doi: 10.1371/journal.pone.0192235 URL | 
| [70] | Muhammad S, Peng Q A, Hu R, et al. Dolomite application to acidic soils: a promising option for mitigating N2O emissions[J]. Environmental Science and Pollution Research, 2015,22(24):19961-19970. doi: 10.1007/s11356-015-5238-4 URL | 
| [71] | Matson,  Naylor P A, Ortiz-Monasterio R, et al. Integration of environmental, agronomic, and economic aspects of fertilizer management[J]. Science, 1998,280(5360):112-115. doi: 10.1126/science.280.5360.112 URL | 
| [72] | 张珂彬, 刘新亮, 康曼, 等. 间种高粱及施用大颗粒尿素对茶园N2O排放的影响[J]. 环境科学, 2020,41(05), 2434-2444. | 
| [73] | Maag M, Vinther F P. Nitrous oxide emission by nitrification and denitrification in the different soil types and at different soil moisture contents and temperature[J]. Applied Soil Ecology, 1996,4(1):5-14. doi: 10.1016/0929-1393(96)00106-0 URL | 
| [74] | Butterbach-Bahl K, Dannenmann M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate[J]. Current Opinion in Environmental Sustainability, 2011,3(5):389-395. doi: 10.1016/j.cosust.2011.08.004 URL | 
| [75] | Granli T, Bøckman O C. Nitrous oxide from agriculture[J]. Norwegian Journal of Agricultural Sciences, 1994,12:1-128. | 
| [76] | Hoyle F C, Murphy D V, Fillery I R P. Temperature and stubble management influence microbial CO2-C evolution and gross N transformation rates[J]. Soil Biology and Biochemistry, 2005,38(1):71-80. doi: 10.1016/j.soilbio.2005.04.020 URL | 
| [77] | Rochette P, Angers D A, Chantigny M H, et al. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures[J]. Canadian Journal of Soil Science, 2008,88(2):175-187. doi: 10.4141/CJSS06016 URL | 
| [78] | Kuiper I, Deyn G B, Thakur M P, et al. Soil invertebrate fauna affect N2O emissions from soil[J]. Global Change Biology, 2013,19(9):2814-2825. doi: 10.1111/gcb.2013.19.issue-9 URL | 
| [1] | 颜越, 金荷仙, 王丽娴. 国内外社区花园健康效益研究进展[J]. 中国农学通报, 2022, 38(34): 68-75. | 
| [2] | 田雨桐, 韩志伟, 赵然, 田永著, 罗广飞, 杨淼. 西南岩溶农业区典型土地利用对土壤氮素特征的影响[J]. 中国农学通报, 2022, 38(33): 89-96. | 
| [3] | 王志强, 杨建锋, 石天池. 宁夏石嘴山地区主要粮食作物铜含量特征及影响因素分析[J]. 中国农学通报, 2022, 38(32): 45-54. | 
| [4] | 郎漫, 袁晓航, 李平. 不同施氮水平对农田黑土净氮转化速率和温室气体排放的影响[J]. 中国农学通报, 2022, 38(31): 93-100. | 
| [5] | 隋振全, 范金石, 尹崇山, 毛金超. 壳聚糖对植物病原体的作用机制及其影响因素[J]. 中国农学通报, 2022, 38(3): 121-126. | 
| [6] | 张楠, 潘仕球, 乔云发, 朱保国, 苗淑杰. 秸秆还田及添加生物炭对黑土玉米生长季N2O排放的影响[J]. 中国农学通报, 2022, 38(27): 79-85. | 
| [7] | 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展[J]. 中国农学通报, 2022, 38(26): 9-14. | 
| [8] | 廖雨梦, 李祖然, 祖艳群, 刘才鑫. 植物对重金属迁移途径及其影响因素的研究进展[J]. 中国农学通报, 2022, 38(24): 63-69. | 
| [9] | 胡洁思, 张建国. 基于SBE和SD法的乡村滨水景观带美景度影响因素研究——以衢州庙源溪为例[J]. 中国农学通报, 2022, 38(22): 69-78. | 
| [10] | 骆美, 郭龙, 费坤, 张天恩, 李陈, 马友华. 耕地质量提升技术及其应用[J]. 中国农学通报, 2022, 38(21): 76-81. | 
| [11] | 张羽丰, 孙江涛, 李青松, 范利瑶, 文倩. 豫东农区农户宅基地退出意愿及影响因素分析——以扶沟县为例[J]. 中国农学通报, 2022, 38(2): 150-156. | 
| [12] | 佟帆, 魏琳, 刘绪军, 任宪平, 李志飞, 王平, 郝燕芳. 东北黑土区植被配置的土壤抗冲性研究[J]. 中国农学通报, 2022, 38(2): 44-51. | 
| [13] | 赵颖, 王飞. 白洋淀湿地CH4和CO2排放特征及其影响因素初探[J]. 中国农学通报, 2022, 38(2): 63-70. | 
| [14] | 张含, 龚敏, 石汝杰. 重庆市蔬菜地土壤硒含量及其影响因素分析[J]. 中国农学通报, 2022, 38(19): 114-119. | 
| [15] | 王敏, 段海燕, 姜恭好, 李忠梅. 水稻花药培养技术的研究进展[J]. 中国农学通报, 2022, 38(14): 18-22. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||