 
 中国农学通报 ›› 2022, Vol. 38 ›› Issue (8): 33-41.doi: 10.11924/j.issn.1000-6850.casb2021-0378
所属专题: 生物技术
        
               		殷婷婷1( ), 李志慧1, 苏佳贺1, 吴世迪1, 徐红岩1, 贺帅1,2, 刘培1,2(
), 李志慧1, 苏佳贺1, 吴世迪1, 徐红岩1, 贺帅1,2, 刘培1,2( ), 李相前1,2(
), 李相前1,2( )
)
                  
        
        
        
        
    
收稿日期:2021-11-15
									
				
											修回日期:2021-03-17
									
				
									
				
											出版日期:2022-03-15
									
				
											发布日期:2022-04-06
									
			通讯作者:
					刘培,李相前
							作者简介:殷婷婷,女,1995年出生,河南开封人,硕士,研究方向为生物纳米。通信地址:223003 江苏省淮安市清江浦区枚乘路1号 淮阴工学院,E-mail: 基金资助:
        
               		YIN Tingting1( ), LI Zhihui1, SU Jiahe1, WU Shidi1, XU Hongyan1, HE Shuai1,2, LIU Pei1,2(
), LI Zhihui1, SU Jiahe1, WU Shidi1, XU Hongyan1, HE Shuai1,2, LIU Pei1,2( ), LI Xiangqian1,2(
), LI Xiangqian1,2( )
)
			  
			
			
			
                
        
    
Received:2021-11-15
									
				
											Revised:2021-03-17
									
				
									
				
											Online:2022-03-15
									
				
											Published:2022-04-06
									
			Contact:
					LIU Pei,LI Xiangqian  			     					     	
							摘要:
硒是人体必需的微量元素之一,对人类生存发展至关重要。作为一种新兴的生物纳米技术,研究制备纳米硒的方法越来越受到人们的重视,有着广阔的应用前景。本研究归纳了3种制备纳米硒的方法,即物理法、化学法和生物法。并详细介绍了生物法合成纳米硒,这种合成方法反应条件更温和、反应更迅速、绿色无污染且可持续发展,是制备纳米硒的3种方法中最优良的合成方式。本研究归纳了国内外近5年常见的表征纳米硒方法,如透射电子显微镜、傅里叶红外光谱、X射线衍射和紫外可见吸收光谱,并就目前的研究进展,对硒产业的应用方向进行归纳,即植物补硒、动物补硒和药物开发,希望给其他学者探索研究制备纳米硒提供新思路,并对探索纳米硒的应用研究进行展望。
中图分类号:
殷婷婷, 李志慧, 苏佳贺, 吴世迪, 徐红岩, 贺帅, 刘培, 李相前. 生物法制备纳米硒的研究进展和应用前景[J]. 中国农学通报, 2022, 38(8): 33-41.
YIN Tingting, LI Zhihui, SU Jiahe, WU Shidi, XU Hongyan, HE Shuai, LIU Pei, LI Xiangqian. Nano-selenium Prepared by Biological Method: Research Progress and Application Prospect[J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 33-41.
| 微生物种类 | 细分 | 前体材料 | 尺寸 | 参考文献 | 
|---|---|---|---|---|
| 细菌 | Bacillus mycoides SeITE01 | 亚硒酸盐 | (160.6±52.24) nm | [29] | 
| 大肠杆菌MG1655 | 亚硒酸钠 | 100~250 nm | [30] | |
| 生防菌枯草芽孢杆菌 | 亚硒酸钠 | 50~250 nm | [31] | |
| 嗜酸乳杆菌LA5 | 亚硒酸钠 | 80~150 nm | [32] | |
| Bacillus cereus CC-1 | 亚硒酸钠 | 100~200 nm | [33] | |
| 贪铜杆菌 | 亚硒酸钠 | 196 nm | [34] | |
| Proteus mirabilis YC801 | 亚硒酸钠 | (178.3±11.5) nm | [35] | |
| 淀粉芽孢杆菌 | 亚硒酸钠 | 300 nm | [36] | |
| Pseudomonas aeruginosa | 亚硒酸钠 | 140 nm | [37] | |
| Pantoea agglomerans | 亚硒酸钠 | 30~300 nm | [38] | |
| Agrobacterium sp. | 亚硒酸钠 | 140~200 nm | [39] | |
| Bacillus sp. MSh-1 | 亚硒酸钠 | 80~220 nm | [40] | |
| Acinetobacter sp. sW30 | 亚硒酸钠 | 100 nm | [41] | |
| 植物乳杆菌 | 亚硒酸钠 | (45.17±11.9) nm | [42] | |
| 真菌 | Saccharomyces cerevisiae | 亚硒酸钠 | 30~100 nm | [43] | 
| Aspergillus terreus | 亚硒酸 | 47 nm | [44] | |
| 酵母 | 亚硒酸钠 | 30~40 nm | [45] | |
| Mariannaea sp. | 亚硒酸钠 | 45~211 nm | [18] | |
| 放线菌 | Streptomyces bikiniensis strain | 亚硒酸钠 | 17 nm | [46] | 
| Streptomyces microflavus strain FSHJ31 | 亚硒酸钠 | 28~123 nm | [47] | |
| filamentous bacterium Streptomyces sp. ES2 | 亚硒酸钠 | 50~500 nm | [48] | |
| 原生动物 | Tetrahymena thermophila SB210 | 亚硒酸 | 50~500 nm | [49] | 
| 微生物种类 | 细分 | 前体材料 | 尺寸 | 参考文献 | 
|---|---|---|---|---|
| 细菌 | Bacillus mycoides SeITE01 | 亚硒酸盐 | (160.6±52.24) nm | [29] | 
| 大肠杆菌MG1655 | 亚硒酸钠 | 100~250 nm | [30] | |
| 生防菌枯草芽孢杆菌 | 亚硒酸钠 | 50~250 nm | [31] | |
| 嗜酸乳杆菌LA5 | 亚硒酸钠 | 80~150 nm | [32] | |
| Bacillus cereus CC-1 | 亚硒酸钠 | 100~200 nm | [33] | |
| 贪铜杆菌 | 亚硒酸钠 | 196 nm | [34] | |
| Proteus mirabilis YC801 | 亚硒酸钠 | (178.3±11.5) nm | [35] | |
| 淀粉芽孢杆菌 | 亚硒酸钠 | 300 nm | [36] | |
| Pseudomonas aeruginosa | 亚硒酸钠 | 140 nm | [37] | |
| Pantoea agglomerans | 亚硒酸钠 | 30~300 nm | [38] | |
| Agrobacterium sp. | 亚硒酸钠 | 140~200 nm | [39] | |
| Bacillus sp. MSh-1 | 亚硒酸钠 | 80~220 nm | [40] | |
| Acinetobacter sp. sW30 | 亚硒酸钠 | 100 nm | [41] | |
| 植物乳杆菌 | 亚硒酸钠 | (45.17±11.9) nm | [42] | |
| 真菌 | Saccharomyces cerevisiae | 亚硒酸钠 | 30~100 nm | [43] | 
| Aspergillus terreus | 亚硒酸 | 47 nm | [44] | |
| 酵母 | 亚硒酸钠 | 30~40 nm | [45] | |
| Mariannaea sp. | 亚硒酸钠 | 45~211 nm | [18] | |
| 放线菌 | Streptomyces bikiniensis strain | 亚硒酸钠 | 17 nm | [46] | 
| Streptomyces microflavus strain FSHJ31 | 亚硒酸钠 | 28~123 nm | [47] | |
| filamentous bacterium Streptomyces sp. ES2 | 亚硒酸钠 | 50~500 nm | [48] | |
| 原生动物 | Tetrahymena thermophila SB210 | 亚硒酸 | 50~500 nm | [49] | 
| 来源 | 前体材料 | 还原剂 | 尺寸 | 参考文献 | 
|---|---|---|---|---|
| Tarragon extract | 亚硒酸钠 | 植物提取物 | 20~50 nm | [50] | 
| Neem | 硒 | 植物提取物 | - | [51] | 
| 茶叶 | 亚硒酸钠 | 茶多糖 | 75 nm | [52] | 
| 昆布多糖 | 亚硒酸钠 | 抗坏血酸 | 60 nm | [53] | 
| 刺槐豆多糖 | 亚硒酸钠 | 抗坏血酸 | 95~100 nm | [54] | 
| 壳聚糖 | 亚硒酸钠 | 抗坏血酸 | 50 nm | [55] | 
| Lemon(Citrus) plant | 亚硒酸钠 | 植物提取物 | 60~80 nm | [56] | 
| Emblica officinalis | 亚硒酸钠 | 果实提取物 | 15~40 nm | [57] | 
| Fenugreek | 亚硒酸 | 种子提取物 | 50~150 nm | [58] | 
| 柠檬 | 亚硒酸 | 柠檬酸提取液 | 164.2~295.3 nm | [59] | 
| Psidium guajava | 亚硒酸钠 | 树叶提取物 | 8~20 nm | [60] | 
| Diospyros montana | 亚硒酸 | 树叶提取物 | 4~16 nm | [61] | 
| Vitis vinifera | 亚硒酸 | 水果提取物 | 3~18 nm | [62] | 
| Theobroma cacao L. Bean Shell Extract | 亚硒酸 | 果实提取物 | 50~500 nm | [63] | 
| Green tea | 亚硒酸钠 | 植物提取物 | 334.7 nm | [64] | 
| 紫菀叶提取物 | 亚硒酸 | 植物提取物 | 169 nm | [65] | 
| Hawthorn fruit extract | 亚硒酸钠 | 植物提取物 | 113 nm | [66] | 
| 来源 | 前体材料 | 还原剂 | 尺寸 | 参考文献 | 
|---|---|---|---|---|
| Tarragon extract | 亚硒酸钠 | 植物提取物 | 20~50 nm | [50] | 
| Neem | 硒 | 植物提取物 | - | [51] | 
| 茶叶 | 亚硒酸钠 | 茶多糖 | 75 nm | [52] | 
| 昆布多糖 | 亚硒酸钠 | 抗坏血酸 | 60 nm | [53] | 
| 刺槐豆多糖 | 亚硒酸钠 | 抗坏血酸 | 95~100 nm | [54] | 
| 壳聚糖 | 亚硒酸钠 | 抗坏血酸 | 50 nm | [55] | 
| Lemon(Citrus) plant | 亚硒酸钠 | 植物提取物 | 60~80 nm | [56] | 
| Emblica officinalis | 亚硒酸钠 | 果实提取物 | 15~40 nm | [57] | 
| Fenugreek | 亚硒酸 | 种子提取物 | 50~150 nm | [58] | 
| 柠檬 | 亚硒酸 | 柠檬酸提取液 | 164.2~295.3 nm | [59] | 
| Psidium guajava | 亚硒酸钠 | 树叶提取物 | 8~20 nm | [60] | 
| Diospyros montana | 亚硒酸 | 树叶提取物 | 4~16 nm | [61] | 
| Vitis vinifera | 亚硒酸 | 水果提取物 | 3~18 nm | [62] | 
| Theobroma cacao L. Bean Shell Extract | 亚硒酸 | 果实提取物 | 50~500 nm | [63] | 
| Green tea | 亚硒酸钠 | 植物提取物 | 334.7 nm | [64] | 
| 紫菀叶提取物 | 亚硒酸 | 植物提取物 | 169 nm | [65] | 
| Hawthorn fruit extract | 亚硒酸钠 | 植物提取物 | 113 nm | [66] | 
| [1] | CUI D X, MA Jun, Liang T T, et al. Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis[J]. International journal of biological macromolecules, 2019, 137:829-835. doi: 10.1016/j.ijbiomac.2019.07.031 URL | 
| [2] | 马洁, 王翰霖, 侯晓宁, 等. 外源硒对水稻抗氧化酶活性、产量及其体内硒含量影响的研究[J]. 中国农学通报, 2021, 37(6):9-15. | 
| [3] | 倪刚, 胡承孝, 李长印, 等. 硒与重金属互作的植物根际过程研究进展[J]. 中国农学通报, 2021, 37(1):78-83. | 
| [4] | 马洁, 王翰霖, 侯晓宁, 等. 外源硒对水稻抗氧化酶活性、产量及其体内硒含量影响的研究[J]. 中国农学通报, 2021, 37(6):9-15. | 
| [5] | ZOU J, SU S, CHEN Z, et al. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy[J]. Artificial cells, nanomedicine, and biotechnology, 2019, 47(1):3456-3464. doi: 10.1080/21691401.2019.1626863 URL | 
| [6] | ARIN Bhattacharjee, ABHISHEK Basu, SUDIN Bhattacharya. Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo[J]. The Nucleus, 2019, 62(3):259-268. doi: 10.1007/s13237-019-00303-1 URL | 
| [7] | TORRES S K, CAMPOS V L, LEón C G, et al. Biosynjournal of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity[J]. Journal of nanoparticle research, 2012, 14(11):1-9. | 
| [8] | 肖锡湘. 纳米硒复合包装材料的制备及其在果蔬保鲜中的应用[D]. 泉州:华侨大学, 2020. | 
| [9] | 薛琳, 孙宇彤, 盛明悦, 等. 纳米材料对作物种子萌发及生长发育的影响[J]. 中国农学通报, 2020, 36(21):33-39. | 
| [10] | LIZA YUE Cruz. 纳米硒粒子的合成、鉴定及抑制非小细胞肺癌作用机制的研究[D]. 大连:大连医科大学, 2019. | 
| [11] | LIU G Y, YANG Xue, ZHANG J X, et al. Synjournal, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides[J]. International journal of biological macromolecules, 2021, 179:418-428. doi: 10.1016/j.ijbiomac.2021.03.018 URL | 
| [12] | 张春梅, 彭晨, 张辽, 等. 生物活性纳米硒在畜牧业的应用研究进展[J]. 畜牧与饲料科学, 2020, 41(2):9-12. | 
| [13] | 苏文, 杨辉, 董腾达, 等. 纳米硒制备方法研究进展[J]. 食品工业, 2021, 42(1):280-284. | 
| [14] | 黄轶驰, 田红旗. 纳米硒制备方法、抗氧化作用机制及临床应用研究进展[J]. 山东医药, 2021, 61(6):103-108. | 
| [15] | 宋萧萧, 冷小京. 纳米硒的研究进展及其在食药领域的应用[J]. 食品安全质量检测学报, 2021, 12(1):210-216. | 
| [16] | 王超, 王威威, 张文夷, 等. 纳米硒复合物的研究进展[J]. 农业技术与装备, 2021(1):66-68. | 
| [17] | TANG Shuo, WANG Ting, JIANG M Y, et al. Construction of arabinogalactans/ selenium nanoparticles composites for enhancement of the antitumor activity[J]. International journal of biological macromolecules, 2019, 128:444-451. doi: S0141-8130(18)36162-2 pmid: 30703423 | 
| [18] | ZHANG J L, TENG Zi, YUAN Yang, et al. Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin[J]. International journal of biological macromolecules, 2018, 107:1406-1413. doi: 10.1016/j.ijbiomac.2017.09.117 URL | 
| [19] | ZHANG JJ, XU Y N, CHEN S W, et al. Enhanced antifouling and antibacterial properties of poly (ether sulfone) membrane modified through blending with sulfonated poly (aryl ether sulfone) and copper nanoparticles[J]. Applied Surface Science, 2018, 434:806-815. doi: 10.1016/j.apsusc.2017.11.007 URL | 
| [20] | ZHANG W J, ZHANG Juan, Ding D J, et al. Synjournal and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract[J]. Artificial cells, nanomedicine, and biotechnology, 2018, 46(7):1403-1470. | 
| [21] | ZENG S Q, KE Yu, LIU Y X, et al. Synjournal and antidiabetic properties of chitosan-stabilized selenium nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2018, 170:115-121. doi: 10.1016/j.colsurfb.2018.06.003 URL | 
| [22] | LIAO Fan, HAN X G, ZHANG Y F, et al. CTAB-assisted solvothermal synjournal of ultralong t -selenium nanowires and bundles using glucose as green reducing agent[J]. Materials Letters, 2018, 214:41-44. doi: 10.1016/j.matlet.2017.11.113 URL | 
| [23] | AJEET Kumar, Igor Sevonkaev, Dan V. Goia. Synjournal of selenium particles with various morphologies[J]. Journal of Colloid and Interface Science, 2014, 416:119-123. doi: 10.1016/j.jcis.2013.10.046 URL | 
| [24] | LI Kui, XU Qiaolin, GAO Shanshan, et al. Highly stable selenium nanoparticles: Assembly and stabilization via flagellin FliC and porin OmpF in Rahnella aquatilis HX2[J]. Journal of hazardous materials, 2021, 414:125545. doi: 10.1016/j.jhazmat.2021.125545 URL | 
| [25] | 王含锐, 王长印, 陈俊宇, 等. 含硒废水处理方法浅析[J]. 广州化工, 2021, 49(5):31-32,37. | 
| [26] | LIU Guoyan, YANG Xue, ZHANG Jixian, et al. Synjournal, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides[J]. International Journal of Biological Macromolecules, 2021, 179:418-428. doi: 10.1016/j.ijbiomac.2021.03.018 pmid: 33676981 | 
| [27] | ABDEL-MONEIM E ABDEL-MONEIM, ABDELRAZEQ M. Shehata, Noureldeen G. Mohamed, et al. Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens[J]. Biological Trace Element Research, 2021:1-12. | 
| [28] | 杨辉, 王丽红, 孔阳, 等. 微生物合成纳米硒的研究进展[J]. 食品工业科技, 2020, 41(15):339-344. | 
| [29] | ELEONORA cremonini, EMANUELE Zonaro, MARTA Donini, et al. "Biogenic Selenium Nanoparticles: Characterization, Antimicrobial Activity and Effects on Human Dendritic Cells and Fibroblasts[J]. Inventi Impact - Pharm biotech & microbio, 2016:758-771. | 
| [30] | 武童, 汪振炯, 华春, 等. 基于大肠杆菌MG1655载体矿化合成纳米硒的研究[J]. 南京工业大学学报:自然科学版, 2017, 39(3):52-57. | 
| [31] | 周驰. 纳米硒的生物合成及其抑菌活性的研究[D]. 合肥:安徽农业大学, 2018. | 
| [32] | 王丽红, 杨辉, 毛建丽, 等. 微生物还原法合成纳米硒益生菌的筛选及其培养条件优化[J]. 陕西科技大学学报, 2019, 37(4):29-34. | 
| [33] | 车林. 细菌合成硒基纳米材料的特性及其光催化/光热转化活性[D]. 大连:大连理工大学, 2018. | 
| [34] | 杨颖, 厉舒祯, 范书伶, 等. 贪铜杆菌Cupriavidus sp.SHE细胞上清液合成纳米硒[J]. 生物工程学报, 2020, 36(6):1162-1169. | 
| [35] | 王钰婷. 纳米硒合成菌株的筛选及产硒机理和应用研究[D]. 北京:中国科学技术大学, 2019. | 
| [36] | 李利军, 马英辉, 卢美欢. 纳米硒合成细菌Lxz-41的鉴定,培养条件优化及其在富硒猕猴桃栽培中的应用[J]. 食品工业科技, 2019, 40(21):110-117. | 
| [37] | SOURABH Dwivedi, ABDULAZIZ A Alkhedhairy, MAQUSOOD Ahamed, et al. Biomimetic synjournal of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay[J]. Plos One, 2017, 8(3):0057404. | 
| [38] | S K TORRES, V L CAMPOS, C G LEón, et al. Biosynjournal of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity[J]. Journal of Nanoparticle Research, 2012, 14(11):1-9. | 
| [39] | BAJAJ Mini, SCHMIDT Susan, WINTER. Josef Formation of Se (0) Nanoparticles by Duganella sp. And Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India[J]. BioMed CENTRAL, 2012, 11(1):64. | 
| [40] | SHAKIBAIE Mojtaba, KHORRAMIZADEH Mohammad Reza, FARAMARZI Mohammad Ali, et al. Biosynjournal and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression[J]. Biotechnology and applied biochemistry, 2010, 56(1):7-15. doi: 10.1042/BA20100042 URL | 
| [41] | SWEETY Wadhwani, MAHADEO Gorain, PINAKI Banerjee, et al. Green synjournal of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells[J]. International Journal of Nanomedicine, 2017:6841-6855. | 
| [42] | 陈东, 李程程, 史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究[J]. 中国生物工程杂志, 2020, 40(9):18-27. | 
| [43] | HARIHARAN H, AL-DHABI N A, KARUPPIAH P, et al. Microbial synjournal of selinium nanocomposite using, saccharomyces cerevisiae and its antimicrobial activity against, pathogens causing nosocomial infection[J]. Chalcogenide letters, 2012, 9(12):509-515. | 
| [44] | KATAYOUN Bahrami, PARDIS Nazari, ZARGHAM Sepehrizadeh, et al. Microbial synjournal of antimony sulfide nanoparticles and their characterization[J]. Annals of microbiology, 2012, 62(4):1419-1425. doi: 10.1007/s13213-011-0392-5 URL | 
| [45] | 吴国杰, 舒绪刚, 占峰, 等. 一种纳米硒及其制备方法[P]. 中国专利: 106801069A, 2017. | 
| [46] | ESSAM Sholkamy, ALI Ali, MANAL Manal Yaser, et al. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1[J]. International journal of nanomedicine, 2015:3389-3401. | 
| [47] | FOROOTANFAR H, ZARE B, FASIHI-BAM H, et al. Biosynjournal and characterization of selenium nanoparticles produced by terrestrial actinomycete Streptomyces microflavus strain FSHJ31[J]. Res Rev J Microbiol Biotechnol, 2013, 3(1):47-53. | 
| [48] | TAN Y, YAO R, WANG R, et al. Reduction of selenite to Se (0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil[J]. Microbial cell factories, 2016, 15(1):1-8. doi: 10.1186/s12934-015-0402-6 URL | 
| [49] | CUI Y H, LI L L, ZHOU N Q, et al. In vivo synjournal of nano-selenium by Tetrahymena thermophila SB210[J]. Enzyme and microbial technology, 2016:185-191. | 
| [50] | YILMAZ MUSTAFA Tahsin, İSPIRLI HUMEYRA, TAYLAN Osman, et al. A green nano-biosynjournal of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization[J]. LWT, 2021, 141:110969. doi: 10.1016/j.lwt.2021.110969 URL | 
| [51] | KU Ma R R, SHAR Ma J, SOOD J. Rayleigh-Bénard cell formation of green synthesized nano-particles of silver and selenium[J]. Materials today:proceedings, 2020, 28:1781-1787. doi: 10.1016/j.matpr.2020.05.191 URL | 
| [52] | 穆静静, 叶锡光, 陈忠正, 等. 茶多糖-纳米硒复合物的制备及表征[J]. 现代食品科技, 2019, 35(12): 144,225-231. | 
| [53] | 崔东晓. 昆布多糖纳米硒的制备及其对人肝癌细胞的生长抑制作用研究[D]. 晋中:山西医科大学, 2018. | 
| [54] | 高义霞, 周向军, 袁毅君, 等. 刺槐豆多糖纳米硒的制备及表征[J]. 食品与生物技术学报, 2014, 33(9):997-1002. | 
| [55] | 陈琬雯. 基于硒活性的壳聚糖复合物的制备研究[D]. 无锡:江南大学, 2020. | 
| [56] | KUMAR SURANJIT Prasad, HIRNEE Patel, TIRTHA Patel, et al. Biosynjournal of Se nanoparticles and its effect on UV-induced DNA damage[J]. Colloids and Surfaces B: Biointerfaces, 2013, 10:261-266. | 
| [57] | GUNTI Lokanadhan, DASS REGINA Sharmila, KALAGATUR NAVEEN Kumar. Phytofabrication of Selenium Nanoparticles from Emblica officinalis Fruit Extract and Exploring Its Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility[J]. Frontiers in microbiology, 2019, 10:931. doi: 10.3389/fmicb.2019.00931 pmid: 31114564 | 
| [58] | RAMAMURTHY C H, SAMPATH K S, ARUN Kumar P, et al. Green synjournal and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells[J]. Bioprocess and Biosystems Engineering, 2013, 36(8):1131-1139. doi: 10.1007/s00449-012-0867-1 URL | 
| [59] | 苏文, 杨辉. 柠檬提取液生物合成纳米硒及其抗氧化性[J]. 精细化工, 2020, 37(11):2266-2272. | 
| [60] | Hammad Alam, Nafeesa Khatoon, Mohsin Raza, et al. Synjournal and Characterization of Nano Selenium Using Plant Biomolecules and Their Potential Applications[J]. Springer US, 2019, 9(1):96-104. | 
| [61] | KOKILA K, ELAVARASAN N, SUJATHA V. Diospyros montana Leaf Extract-Mediated Synjournal of Selenium nanoparticles and its biological applications[J]. New Journal of Chemistry, 2017:7481-7490. | 
| [62] | SHARMA Garima, SHARMA Ashish Ranjan, BHAVESH Riju, et al. Biomolecule-mediated synjournal of selenium nanoparticles using dried Vitis vinifera (raisin) extract.[J]. Molecules (Basel, Switzerland), 2014, 19(3):2761-2770. doi: 10.3390/molecules19032761 URL | 
| [63] | MELLINAS C, A JIMéNez, MDC GARRIGós. Microwave-Assisted Green Synjournal and Antioxidant Activity of Selenium Nanoparticles Using Theobroma cacao L. Bean Shell Extract[J]. Molecules, 2019, 24(22):24224048. | 
| [64] | YE X G, CHEN Z Z, ZHANG Y Y, et al. Construction, characterization, and bioactive evaluation of nano-selenium stabilized by green tea nano-aggregates[J]. LWT, 2020, 129:109475. doi: 10.1016/j.lwt.2020.109475 URL | 
| [65] | SAMIE Yaseen Sharaf Zeebaree, AYMN Yaseen Sharaf Zeebaree, OSAMA Ismail Haji Zebari. Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation[J]. Sustainable Chemistry and Pharmacy, 2020, 15:100210. doi: 10.1016/j.scp.2019.100210 URL | 
| [66] | CUI D, LIANG T, SUN L, et al. Green synjournal of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis[J]. Pharmaceutical biology, 2018, 56(1):528-534. doi: 10.1080/13880209.2018.1510974 URL | 
| [67] | 王丽红, 杨辉, 苏文, 等. 植物乳杆菌LP21绿色合成纳米硒及对溶藻弧菌的抑菌活性[J]. 食品科学, 2021:1-14 | 
| [68] | 张榕. 核桃蛋白酶解物调控制备纳米硒及其抗肿瘤活性的研究[D]. 武汉:华南理工大学, 2006. | 
| [69] | HAMID Forootanfar, MAHBOUBEH ADELI-SARDOU, MARYAM Nikkhoo, et al. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide[J]. Journal of Trace Elements in Medicine and Biology, 2014, 28(1):75-79. doi: 10.1016/j.jtemb.2013.07.005 pmid: 24074651 | 
| [70] | 杨安源, 胡恩烨, 周红军, 等. 亚硒酸钠/海藻酸钠微胶囊的制备及表征[J]. 广东农业科学, 2018, 45(12):124-130. | 
| [71] | WANG Y Y, YI Wen, SUN Ling, et al. Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide-protein complexes from Corbicula fluminea[J]. Food bioscience on sciverse sciencedirect, 2018, 26:177-184. | 
| [72] | BASKAR G, LALITHA K, BIKK U, George G. Synjournal, characterization and anticancer activity of selenium nanobiocomposite of l-asparaginase[J]. Bulletin of Materials Science, 2019, 42(1):1-4. doi: 10.1007/s12034-018-1682-3 URL | 
| [73] | SARKAR J, DEY P, SAHA S, et al. Mycosynjournal of selenium nanoparticles[J]. Micro & Nano Letters Iet, 2011:599-602. | 
| [74] | QIU W Y, WANG Y Y, MENG W, et al. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles[J]. Colloids and surfaces B: Biointerfaces, 2018, 170:692-700. doi: 10.1016/j.colsurfb.2018.07.003 URL | 
| [75] | SOUMYA Menon, SHRUDHI Devi K.S, HAPPY Agarwal, et al. Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on Anti-Microbial and Anti-Oxidant Activities[J]. Colloid and Interface Science Communications, 2019, 29:1-8. doi: 10.1016/j.colcom.2018.12.004 URL | 
| [76] | KASI Anu, GANESAN Singaravelu, KADARKARAI Murugan, et al. Green-Synjournal of Selenium Nanoparticles Using Garlic Cloves (Allium sativum ): Biophysical Characterization and Cytotoxicity on Vero Cells[J]. Journal of Cluster Science, 2017, 28(1):551-563. doi: 10.1007/s10876-016-1123-7 URL | 
| [77] | PARISA Jafari Fesharaki, PARDIS Nazari, MOJTABA Shakibaie, et al. Biosynjournal of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process[J]. Brazilian Journal of Microbiology, 2010, 41(2):461-466. doi: 10.1590/S1517-838220100002000028 pmid: 24031517 | 
| [78] | CHETAN P S, CHARU Dwivedi, KRISHAN K.S, et al. Riley oxidation: A forgotten name reaction for synjournal of selenium nanoparticles[J]. Materials research bulletin, 2010, 45(9):1213-1217. doi: 10.1016/j.materresbull.2010.05.013 URL | 
| [79] | LUESAKUL U, KOMENEK S, PUTHONG S, et al. Shape-controlled synthesis of cubic-like selenium nanoparticles via the self-assembly method. Carbohydr. polym, 2016: 153,435-444. | 
| [80] | HEBAT-ALLAH A. Hussein, OSAMA M. Darwesh, BAHAA B.Mekki, et al. Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium[J]. Biotechnology reports, 2019, 24:377. | 
| [81] | ANTONY Dhivya, YADAV Rakhi, KALIMUTHU Raja. Accumulation of Phyto-mediated nano-CeO2 and selenium doped CeO2 on Macrotyloma uniflorum (horse gram) seed by nano-priming to enhance seedling vigor[J]. Biocatalysis and agricultural biotechnology, 2021, 31:101923. doi: 10.1016/j.bcab.2021.101923 URL | 
| [82] | 刘嘉伟. 复合纳米硒载药体系用于防治植物灰霉病的研究[D]. 济南:暨南大学, 2020. | 
| [83] | 肖锡湘. 纳米硒复合包装材料的制备及其在果蔬保鲜中的应用[D]. 泉州:华侨大学, 2020. | 
| [84] | 朱磊. 纳米硒在金荞麦中富集及对其产量与活性物质的影响[D]. 吉首:吉首大学, 2019. | 
| [85] | 胡万行, 石玉, 程玉琦, 等. 纳米硒对紫色马铃薯生长及其矿质元素含量和品质特性的影响[J]. 西北植物学报, 2020, 40(2):296-303. | 
| [86] | 陈惠婷, 杨炜君, 刘香香, 等. 纳米硒的生物学特点及在肉鸡生产中的应用进展[J]. 广东饲料, 2018(27):31-33. | 
| [87] | 戴五洲. 纳米硒对肥育猪生长、肉质及抗氧化机能的影响[D]. 南昌:江西农业大学, 2016. | 
| [88] | 李若铭, 孔祎頔, 王桂芹. 微量元素硒的生物学功能及其对水产动物的影响的研究进展[J]. 饲料工业, 2021, 42(6):9-14. | 
| [89] | 江淼. 硒对动物生殖性能影响的研究[J]. 黑龙江动物繁殖, 2019, 27(6):3-5. | 
| [90] | 苏华华, 王艳华. 纳米硒的制备及生物医学应用研究进展[J]. 生物技术通讯, 2020, 31(5):621-626. | 
| [91] | 张泽杭. 功能化纳米硒联合二甲双胍在肿瘤治疗中的应用及机制研究[D]. 济南:暨南大学, 2020. | 
| [92] | CRUZ Liza Yue. 纳米硒粒子的合成、鉴定及抑制非小细胞肺癌作用机制的研究[D]. 大连:大连医科大学, 2019. | 
| [1] | 吴松, 周甜, 杨立宾, 江云兵, 潘虹, 刘永志, 杜君. 基于VOSviewer的叶际微生物研究现状可视化分析[J]. 中国农学通报, 2023, 39(1): 142-150. | 
| [2] | 王丽娜, 杨瑛, 杜苏. 生物炭施入对盐碱土壤影响的研究现状[J]. 中国农学通报, 2022, 38(8): 81-87. | 
| [3] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. | 
| [4] | 曹秋梅, 王路义, 李晓曼, 李俊达, 刘梦田, 郑瑶, 王利华. 有效微生物对BALB/C小鼠生长性能、养分消化率和粪便氨气排放量的影响[J]. 中国农学通报, 2022, 38(7): 124-128. | 
| [5] | 李祥, 王永平, 王耀凤, 褚春年, 孙喜军, 柯希恒, 曾桥. 枝条有机肥最佳堆肥参数及施用效果研究[J]. 中国农学通报, 2022, 38(6): 63-68. | 
| [6] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. | 
| [7] | 韩晓芳, 田晓明, 杨永利, 张敬智, 张清, 张凯, 张涛, 贾林. 2种土壤复合改良剂对滨海盐渍土的改良及肥力作用[J]. 中国农学通报, 2022, 38(5): 54-59. | 
| [8] | 王岩, 王丽伟, 赵洪颜, 赵敏, 杨洪岩. 不同人参栽培土壤养分及微生物群落组成特征解析[J]. 中国农学通报, 2022, 38(5): 60-68. | 
| [9] | 徐翎清, 李佳佳, 常晓, 张云龙, 刘大丽. 土壤氮矿化相关机理的研究进展[J]. 中国农学通报, 2022, 38(34): 97-101. | 
| [10] | 沙月霞, 黄泽阳, 魏照清. 生物菌剂撒施对宁夏石嘴山盐碱地微生物群落结构的影响[J]. 中国农学通报, 2022, 38(34): 82-90. | 
| [11] | 杨潇湘, 黄小琴, 张蕾, 张重梅, 鲜赟曦, 周西全, 刘勇. 生防菌盾壳霉对油菜根际土壤微生物群落结构的影响[J]. 中国农学通报, 2022, 38(32): 92-98. | 
| [12] | 王丽霞, 殷晓敏, 刘永霞, 连子豪, 王必尊, 何应对. 间作韭菜模式下番木瓜根区微生物群落变化特征[J]. 中国农学通报, 2022, 38(31): 66-76. | 
| [13] | 刘淑娟, 张翠萍, 李淑英, 杨小燕, 周元清, 李元. 草本植物根际微生物降解地表水环境邻苯二甲酸酯的研究[J]. 中国农学通报, 2022, 38(3): 44-51. | 
| [14] | 晁赢, 付钢锋, 阎祥慧, 杭中桥, 杨全刚, 王会, 潘红, 娄燕宏, 诸玉平. 有机肥对作物品质、土壤肥力及环境影响的研究进展[J]. 中国农学通报, 2022, 38(29): 103-107. | 
| [15] | 焦永康. 天冬氨酸衍生物在土壤重金属污染治理方面的研究进展[J]. 中国农学通报, 2022, 38(28): 79-82. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||