Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (28): 28-34.doi: 10.11924/j.issn.1000-6850.casb2020-0861
Previous Articles Next Articles
Fan Xinyue1,2(), Zhang Hua1(
), Zhao Jiye1, Du Zimo1, Cong Richen1
Received:
2021-01-04
Revised:
2021-08-20
Online:
2021-10-05
Published:
2021-10-28
Contact:
Zhang Hua
E-mail:2251984419@qq.com;seastory@163.com
CLC Number:
Fan Xinyue, Zhang Hua, Zhao Jiye, Du Zimo, Cong Richen. Research Progress on Mechanism of Fraxinus velutina Responding to Salt Tolerance[J]. Chinese Agricultural Science Bulletin, 2021, 37(28): 28-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0861
[1] | 刘铃, 武小龙, 诸葛强. 植物应答非生物胁迫信号传导研究进展[J]. 分子植物育种, 2018, 16(2):614-625. |
[2] | Gong Zhizhong, Xiong Liming, Shi Huazhong, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020, 63(5). |
[3] | Zelm Eva van, Zhang Yanxia, Christa Testerink. Salt Tolerance Mechanisms of Plants[J]. Annual Review of Plant Biology, 2020, 71:24,31. |
[4] | Ajay Singh. Soil salinization management for sustainable development: A review[J]. Journal of Environmental Management, 2021, 277. |
[5] | 云雪雪, 陈雨生. 国际盐碱地开发动态及其对我国的启示[J]. 国土与自然资源研究, 2020(1):84-87. |
[6] | 燕丽萍, 吴德军, 王因花, 等. 4种白蜡的耐盐性响应特征与综合评价[J]. 西北植物学报, 2019, 39(7):1270-1278. |
[7] | Munns R. Comparative physiology of salt and water stress[J]. Plant Cell & Environment, 2002, 25(2):239. |
[8] | 刘萍. 盐渍土壤盐浸提液处理下绒毛白蜡种子的萌发特性[J]. 安徽农业科学, 2010, 38(5):2654-2656. |
[9] | 吴敏, 曹帮华. 盐胁迫下盐碱地和非盐碱地绒毛白蜡种子的发芽和生理特性研究[J]. 种子, 2006(4):4-7. |
[10] | 许盼云, 吴玉霞, 何天明. 植物对盐碱胁迫的适应机理研究进展[J]. 中国野生植物资源, 2020, 39(10):41-49. |
[11] | Wang Hao, Liang Liyan, Liu Shuo, et al. Maize genotypes with deep root systems tolerate salt stress better than those with shallow root systems during early growth[J]. Journal of Agronomy and Crop Science, 2020, 206(6). |
[12] | 刘海曼, 封晓辉, 刘毅, 等. 绒毛白蜡对NaCl胁迫的生理响应[J]. 北方园艺, 2016(10):70-75. |
[13] | 武德, 曹帮华, 刘欣玲, 等. 盐碱胁迫对刺槐和绒毛白蜡叶片叶绿素含量的影响[J]. 西北林学院学报, 2007(3):51-54,70. |
[14] | 李晓雅, 赵翠珠, 程小军, 等. 盐胁迫对亚麻荠幼苗生理生化指标的影响[J]. 西北农业学报, 2015, 24(4):76-83. |
[15] | 闫文华. 白蜡无性系苗期抗涝耐盐性研究[D]. 泰安:山东农业大学, 2019. |
[16] | 陆景星, 王浮霞, 李莹. NaCl胁迫对白蜡种子生理特性的影响[J]. 河北林果研究, 2016, 31(2):170-174. |
[17] | 武德. 绒毛白蜡种苗耐盐碱性研究[D]. 泰安:山东农业大学, 2007. |
[18] | 朱泓, 黄涛, 刘勇军, 等. NaCl胁迫对滨梅扦插苗生物量和水分积累的影响[J]. 西北植物学报, 2015, 35(2):356-363. |
[19] |
陈旭, 刘洪凯, 赵春周, 等. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应[J]. 植物生态学报, 2019, 43(8):697-708.
doi: 10.17521/cjpe.2019.0131 |
[20] | 王磊. 水曲柳×绒毛白蜡杂交与胚培养体系建立及F1耐盐性[D]. 哈尔滨:东北林业大学, 2008. |
[21] | Zhu Jian-Kang. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53. |
[22] | 赵常玉, 李剑, 张金林, 等. HKT蛋白与植物耐盐性研究进展[J]. 草业科学, 2012, 29(10):1604-1612. |
[23] | 王友平, 刘德玺, 孙明高, 等. 绒毛白蜡营养器官中Na+、K+、Cl-的分布[J]. 石河子大学学报:自然科版, 2009, 27(1):27-29. |
[24] | 段丽君, 李国元, 汪殿蓓. 分根区盐胁迫下绒毛白蜡盐离子分配和渗透调节物质积累特征[J]. 西北林学院学报, 2019, 34(5):49-56,121. |
[25] | Isayenkov Stanislav V, Maathuis Frans J M. Plant Salinity Stress: Many Unanswered Questions Remain[J]. Frontiers in Plant Science, 2019, 10. |
[26] | Shen Qiufang, J Yu iahua, Fu Liangbo, et al. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley[J]. Plant Physiology and Biochemistry, 2018, 123. |
[27] | 韩佩尧, 赵烨, 田彦挺, 等. 植物耐盐机制及耐盐基因在杨树育种中的应用[J]. 分子植物育种, 2021. |
[28] | Polavarapu B Kavi Kishor, Nese Sreenivasulu. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?[J]. Plant, Cell & Environment, 2014, 37(2). |
[29] | 闫文华, 吴德军, 燕丽萍, 等. 盐胁迫下白蜡无性系苗期的耐盐性综合评价[J]. 北京林业大学学报, 2019, 41(11):44-53. |
[30] | Ozfidan-Konakci Ceyda, Yildiztugay Evren, Alp Fatma Nur, et al. Naringenin induces tolerance to salt/osmotic stress through the regulation of nitrogen metabolism, cellular redox and ROS scavenging capacity in bean plants[J]. Plant Physiology and Biochemistry, 2020, 157. |
[31] | Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance[J]. Journal of Experimental Botany, 2014, 65(5). |
[32] | 吴丽云, 曹帮华. 盐碱地绒毛白蜡和苦楝种子抗盐萌发机理[J]. 植物学通报, 2005(6):668-672. |
[33] | Liping Yan, Cuilan Liu, Yinhua Wang, et al. De novo transcriptome analysis of Fraxinus velutina Torr in response to NaCl stress[J]. Tree Genetics & Genomes, 2019, 15(4). |
[34] | Yan L P, Liu C L, Wu D J, et al. De novo transcriptome analysis of Fraxinus velutina using Illumina platform and development of EST-SSR markers[J]. Biologia Plantarum, 2017, 61(2). |
[35] | 李田. 绒毛白蜡表达谱分析及MYB基因的克隆和功能研究[D]. 济南:山东师范大学, 2014. |
[36] | 伍静辉, 谢楚萍, 田长恩, 等. 脱落酸调控种子休眠和萌发的分子机制[J]. 植物学报, 2018, 53(4):542-555. |
[37] | Ma Yanlin, Cao Jing, He Jiahan, et al. Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses[J]. International Journal of Molecular Sciences, 2018, 19(11). |
[38] |
陈唯, 曾晓贤, 谢楚萍, 等. 植物内源ABA水平的动态调控机制[J]. 植物学报, 2019, 54(6):677-687.
doi: 10.11983/CBB19092 |
[39] | Eiji Nambara, Annie Marion-Poll. Abscisic acid biosynjournal and catabolism[J]. Annual Review of Plant Biology, 2005, 56. |
[40] | Kong Xiangqiang, Luo Zhen, Dong Hezhong, et al. H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity[J]. Journal of Experimental Botany, 2016, 67(8). |
[41] | 牛志强, 刘国顺, 师婷婷, 等. 烟草NCED3基因的克隆及其干旱胁迫表达分析[J]. 中国烟草学报, 2015, 21(3):100-106. |
[42] | Bao Gegen, Zhuo Chunliu, Qian Chunmei, et al. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants[J]. Plant Biotechnology Journal, 2016, 14(1). |
[43] | Son SeungHyun, Chitnis Vijaya R, Liu Aihua, et al. Abscisic acid metabolic genes of wheat (Triticum aestivum L.): identification and insights into their functionality in seed dormancy and dehydration tolerance[J]. Planta, 2016, 244(2). |
[44] |
Li Tian, Sun Jingkuan, Li Chuanrong, et al. Cloning and expression analysis of the FvNCED3 gene and its promoter from ash(Fraxinus velutina)[J]. Journal of Forestry Research, 2019, 30(2):471-482.
doi: 10.1007/s11676-018-0632-7 |
[45] |
张金飞, 李霞, 谢寅峰. 植物SnRKs家族在胁迫信号通路中的调节作用[J]. 植物学报, 2017, 52(3):346-357.
doi: 10.11983/CBB16095 |
[46] | Zhu Jian-Kang. Abiotic Stress Signaling and Responses in Plants[J]. Cell, 2016, 167(2). |
[47] |
Soon Fen-Fen, Ng Ley-Moy, Zhou X Edward, et al. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases[J]. Science, 2012, 335:85-88.
doi: 10.1126/science.1215106 pmid: 22116026 |
[48] | Fumiyuki Soma, Fuminori Takahashi, Takamasa Suzuki, et al. Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress[J]. Nature Communications, 2020, 11(1). |
[49] | Lin Zhen, Li Yuan, Zhang Zhengjing, et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants[J]. Nature Communications, 2020, 11(1). |
[50] | 陈春晓. 绒毛白蜡耐盐基因FvSnRK2的克隆及功能分析[D]. 济南:山东师范大学, 2019. |
[51] |
Banerjee A, Roychoudhury A. Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation[J]. Plant Gene, 2017, 11:199-204.
doi: 10.1016/j.plgene.2017.05.011 URL |
[52] | 杜康兮, 沈文辉, 董爱武. 表观遗传调控植物响应非生物胁迫的研究进展[J]. 植物学报, 2018, 53(5):581-593. |
[53] | Zeng Fan-Suo, Li Lei-Lei, Liang Nan-Song, et al. Salt tolerance and alterations in cytosine methylation in the interspecific hybrids of Fraxinus velutina and Fraxinus mandshurica[J]. Euphytica, 2015, 205(3). |
[54] | Jia Xu-mei, Wang Hai, Svetla Sofkova, et al. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress[J]. Scientia Horticulturae, 2019, 245. |
[55] | 毛恋, 芦建国, 江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种, 2020, 18(10):3441-3448. |
[56] | Yang Yongqing, Wu Yujiao, Ma Liang, et al. The Ca2+ Sensor SCaBP3/CBL7 Modulates Plasma Membrane H+-ATPase Activity and Promotes Alkali Tolerance in Arabidopsis[J]. The Plant cell, 2019, 31(6). |
[57] |
郭倩倩, 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5):662-672.
doi: 10.11983/CBB19100 |
[1] | CHEN Hemin, XIAO Wenfang, CHEN Heming, LV Fubing, ZHU Genfa, LI Zongyan, LI Zuo. Research Progress and Visual Analysis of Orchid Fresh-keeping Based on CiteSpace [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 151-164. |
[2] | LI Xingxing, HAN Fang, ZHOU Xue, SU Leping, YUAN Hong’an. Research Progress of Selenium-enriched Millet [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 1-6. |
[3] | LIU Peng, WU Qiaohua, SHU Huili, ZHOU Liyin, WANG Xiaodong. The Response Mechanism of Camellia oleifera to Stress Factors: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 24-28. |
[4] | YAN Yue, JIN Hexian, WANG Lixian. Research on Health Benefits of Community Gardens at Home and Abroad: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 68-75. |
[5] | YANG Wuguang, WANG Jun, WEN Kai, QIU Jingtao. Research Progress and Prospect of Rice-Turtle Farming in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(31): 12-16. |
[6] | WANG Qing, FANG Wensheng, LI Yuan, WANG Qiuxia, YAN Dongdong, CAO Aocheng. Advances in New Nematicides and Their Action Mechanism [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 100-107. |
[7] | MA Lei, HUANG Xiaojun, GANBAT Dashzebegd, MUNGUNKHUYAG Ariunaad, TSAGAANTSOOJ Nanzadd, ALTANCHIMEG Dorjsuren, BAO Gang, TONG Siqin, BAO Yuhai, ENKHNASAN Davaadorj. Monitoring Forest Insect Pests by Different Remote Sensing Sensors: Research Progress and Prospect [J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 91-99. |
[8] | LI Yahua, ZHANG Xiangqian, AN Qi, WU Di, LIU Zhanyong, SUN Feng, ZHANG Dejian, GAO Min, ZHANG Guoying, XING Jun. Evaluation Methods of Cultivated Land Fertility and Their Practical Application: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 60-68. |
[9] | PENG Chan, ZHANG Xinye, LIU Zongkun, MA Linjiang, CHEN Huiling. Research Progress of SSR Molecular Markers of Dendrobium Plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 36-40. |
[10] | Wu Wenyan, Cheng Zhichao, Li Mengsha, Sui Xin, Zeng Xiannan. Development of Rhizobium Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2021, 37(9): 109-117. |
[11] | Cui Guomei, Xu Fangfang, Li Shunfeng, Wei Shuxin, Liu Lina, Wang Anjian. Deep Processing and Bioactivity Study of Lentinus edodes: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 132-137. |
[12] | Zhang Xu, Hu Baogui. Application of Agricultural Water-saving Irrigation Technology in China: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 153-158. |
[13] | Xu Yang, Wu Zhi, Liu Xiaorong, Chen Jinfeng, Han Qingbin, Liu Ping, Wang Jiayou, Wang Dairong. Bibliometrics Analysis of Studies on Constructed Wetland Based on Web of Science [J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 20-21. |
[14] | Gao Zhongkui, Jiang Jing, Han Zhuqiang, Huang Zhipeng, Xiong Faqian, Tang Xiumei, Wu Haining, Zhong Ruichun, Liu Jing, Tang Ronghua, He Liangqiong. CRISPR/Cas9 System and Its Research Progress in Grain and Oil Crop Genetic Improvement [J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 26-34. |
[15] | Xu Ting, Liu Yantao, Wang Haijiang. Response Mechanism and Mitigation Measures of Peanut Salt Tolerance: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 8-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||