Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (16): 51-58.doi: 10.11924/j.issn.1000-6850.casb20190900619
Previous Articles Next Articles
Xu Ruo1(), Zhang Xiufen1, Li Yanbing2, Zi Shuhui1,2, Yang Shengchao1, Liu Tao1(
)
Received:
2019-09-09
Revised:
2021-03-19
Online:
2021-06-05
Published:
2021-06-16
Contact:
Liu Tao
E-mail:907689386@qq.com;52133490@qq.com
CLC Number:
Xu Ruo, Zhang Xiufen, Li Yanbing, Zi Shuhui, Yang Shengchao, Liu Tao. Effects of Drought Stress on Physiological Indexes of Panax notoginseng and Transcriptome Analysis[J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 51-58.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20190900619
数据库 | 注释数目 | 长度300~1000 bp | 长度≥1000 bp |
---|---|---|---|
COG | 10005 | 2737 | 4524 |
GO | 19380 | 6733 | 7179 |
KEGG | 11905 | 4372 | 4614 |
KOG | 18414 | 6331 | 7400 |
Pfam | 19951 | 6277 | 9640 |
Swiss-Prot | 19183 | 7111 | 8338 |
Egg NOG | 30306 | 10951 | 11524 |
Nr | 32666 | 11958 | 11782 |
All | 33151 | 12087 | 11808 |
数据库 | 注释数目 | 长度300~1000 bp | 长度≥1000 bp |
---|---|---|---|
COG | 10005 | 2737 | 4524 |
GO | 19380 | 6733 | 7179 |
KEGG | 11905 | 4372 | 4614 |
KOG | 18414 | 6331 | 7400 |
Pfam | 19951 | 6277 | 9640 |
Swiss-Prot | 19183 | 7111 | 8338 |
Egg NOG | 30306 | 10951 | 11524 |
Nr | 32666 | 11958 | 11782 |
All | 33151 | 12087 | 11808 |
代谢通路ID | 注释到该通路的差异基因 | 注释到该通路的所有基因 | 代谢通路注释 |
---|---|---|---|
Ko00906 | 5 | 43 | 类胡萝卜素生物合成 |
Ko00966 | 2 | 2 | 硫甙生物合成 |
Ko00940 | 7 | 149 | 苯丙素生物合成 |
Ko04626 | 7 | 193 | 植物-病原体相互作用 |
Ko04075 | 8 | 262 | 植物激素信号转导 |
Ko00360 | 5 | 106 | 苯丙氨酸代谢 |
Ko00908 | 2 | 20 | 玉米素生物合成 |
Ko00500 | 6 | 250 | 淀粉和蔗糖代谢 |
Ko00052 | 3 | 91 | 半乳糖代谢 |
Ko00460 | 2 | 55 | 氰氨基酸代谢 |
Ko00910 | 2 | 61 | 氮代谢 |
Ko00909 | 1 | 18 | 倍半萜类和三萜类生物合成 |
Ko00270 | 3 | 163 | 半胱氨酸和蛋氨酸代谢 |
Ko00062 | 1 | 27 | 脂肪酸延伸 |
Ko01210 | 2 | 116 | 2-氧代羧酸代谢 |
Ko00196 | 1 | 47 | 光合作用-天线蛋白质 |
Ko03430 | 1 | 53 | 错配修复 |
Ko00400 | 1 | 60 | 苯丙氨酸、酪氨酸和色氨酸的生物合成 |
Ko03010 | 7 | 642 | 核糖体 |
Ko03440 | 1 | 63 | 同源重组 |
Ko00520 | 2 | 178 | 氨基糖和核苷酸糖代谢 |
Ko00592 | 1 | 81 | α-亚麻酸代谢 |
Ko00900 | 1 | 85 | 萜类骨架生物合成 |
Ko03420 | 1 | 85 | 核苷酸切除修复 |
Ko03030 | 1 | 87 | DNA复制 |
Ko01040 | 1 | 93 | 不饱和脂肪酸的生物合成 |
Ko00040 | 1 | 94 | 戊糖和葡萄糖醛酸相互转化 |
Ko00071 | 1 | 126 | 脂肪酸降解 |
Ko00480 | 1 | 127 | 谷胱甘肽代谢 |
Ko00190 | 2 | 316 | 氧化磷酸化 |
Ko04146 | 1 | 180 | 过氧化物酶体 |
Ko00240 | 1 | 185 | 嘧啶代谢 |
Ko01212 | 1 | 188 | 脂肪酸代谢 |
Ko04141 | 2 | 263 | 蛋白质在内质网中的加工 |
Ko03013 | 1 | 281 | RNA运输 |
Ko01230 | 2 | 472 | 氨基酸的生物合成 |
Ko03040 | 1 | 322 | 剪接体 |
代谢通路ID | 注释到该通路的差异基因 | 注释到该通路的所有基因 | 代谢通路注释 |
---|---|---|---|
Ko00906 | 5 | 43 | 类胡萝卜素生物合成 |
Ko00966 | 2 | 2 | 硫甙生物合成 |
Ko00940 | 7 | 149 | 苯丙素生物合成 |
Ko04626 | 7 | 193 | 植物-病原体相互作用 |
Ko04075 | 8 | 262 | 植物激素信号转导 |
Ko00360 | 5 | 106 | 苯丙氨酸代谢 |
Ko00908 | 2 | 20 | 玉米素生物合成 |
Ko00500 | 6 | 250 | 淀粉和蔗糖代谢 |
Ko00052 | 3 | 91 | 半乳糖代谢 |
Ko00460 | 2 | 55 | 氰氨基酸代谢 |
Ko00910 | 2 | 61 | 氮代谢 |
Ko00909 | 1 | 18 | 倍半萜类和三萜类生物合成 |
Ko00270 | 3 | 163 | 半胱氨酸和蛋氨酸代谢 |
Ko00062 | 1 | 27 | 脂肪酸延伸 |
Ko01210 | 2 | 116 | 2-氧代羧酸代谢 |
Ko00196 | 1 | 47 | 光合作用-天线蛋白质 |
Ko03430 | 1 | 53 | 错配修复 |
Ko00400 | 1 | 60 | 苯丙氨酸、酪氨酸和色氨酸的生物合成 |
Ko03010 | 7 | 642 | 核糖体 |
Ko03440 | 1 | 63 | 同源重组 |
Ko00520 | 2 | 178 | 氨基糖和核苷酸糖代谢 |
Ko00592 | 1 | 81 | α-亚麻酸代谢 |
Ko00900 | 1 | 85 | 萜类骨架生物合成 |
Ko03420 | 1 | 85 | 核苷酸切除修复 |
Ko03030 | 1 | 87 | DNA复制 |
Ko01040 | 1 | 93 | 不饱和脂肪酸的生物合成 |
Ko00040 | 1 | 94 | 戊糖和葡萄糖醛酸相互转化 |
Ko00071 | 1 | 126 | 脂肪酸降解 |
Ko00480 | 1 | 127 | 谷胱甘肽代谢 |
Ko00190 | 2 | 316 | 氧化磷酸化 |
Ko04146 | 1 | 180 | 过氧化物酶体 |
Ko00240 | 1 | 185 | 嘧啶代谢 |
Ko01212 | 1 | 188 | 脂肪酸代谢 |
Ko04141 | 2 | 263 | 蛋白质在内质网中的加工 |
Ko03013 | 1 | 281 | RNA运输 |
Ko01230 | 2 | 472 | 氨基酸的生物合成 |
Ko03040 | 1 | 322 | 剪接体 |
[1] |
Chen Lijuan, Yang Ye, Ge Jin, et al. Study on the grading standard of Panax notoginseng seedlings[J]. Journal of Ginseng Research, 2018,42(2):208-217.
doi: 10.1016/j.jgr.2017.03.006 URL |
[2] |
Zhang Yu, Zheng Yujie, Xia Pengguo, et al. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties[J]. Scientific Reports, 2019,9(1):13205-13226
doi: 10.1038/s41598-019-49625-9 pmid: 31519939 |
[3] |
Xie Weijie, Meng Xiangbao, Zhai Yadong, et al. Panax notoginseng Saponins: A Review of Its Mechanisms of Antidepressant or Anxiolytic Effects and Network Analysis on Phytochemistry and Pharmacology[J]. Molecules 2018,23(4):940-970.
doi: 10.3390/molecules23040940 URL |
[4] |
Baljeet Singh, Sarvjeet Kukreja, Umesh Goutam. Milestones achieved in response to drought stress through reverse genetic approaches[J]. F1000 Research, 2018,7:1311-1344.
doi: 10.12688/f1000research URL |
[5] |
Du Y T, Zhao M J, Wang C T, et al. Identification and characterization of GmMYB118 responses to drought and salt stress[J]. BMC Plant Biology, 2018,18(1):320-364.
doi: 10.1186/s12870-018-1551-7 URL |
[6] | 范苏鲁, 苑兆和, 冯立娟, 等. 水分胁迫下大丽花光合及叶绿素荧光的日变化特性[J]. 西北植物学报, 2011,31(6):1223-1228. |
[7] |
Ma Qibin, Xia Zhenglin, Cai Zhandong, et al. GmWRKY16 Enhances Drought and Salt Tolerance Through an ABA-Mediated Pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2019,9:1979-2025.
doi: 10.3389/fpls.2018.01979 URL |
[8] |
Li D, Li C, Sun H, et al. Effects of drought on soluble protein content and protective enzyme system in cotton leaves[J]. Front Agric China, 2010,4:56-62.
doi: 10.1007/s11703-010-0102-2 URL |
[9] | 孔令芳, 杨晓燕. 云南省干旱成因及对策分析[J]. 大理学院学报, 2014,13(12):52-55. |
[10] | 赵宏光, 寻路路, 梁宗锁, 等. 土壤水分含量对三七叶片生长、抗氧化酶活性及渗透调节物质含量的影响[J]. 西北农业学报, 2013,22(12):159-163. |
[11] | Wang D, Liu Y X, Yu Q, et al. Functional Analysis of the Soybean GmCDPK3 Gene Responding to Drought and Salt Stresses[J]. International Journal of Molecular Ences, 2019,20(23):5909-5941. |
[12] |
Arnon D I. Copper enzymesin in chloroplasts polyphenoloxidas in Betavulgaris[J]. Plant Physiology, 1949,24:1-15.
doi: 10.1104/pp.24.1.1 URL |
[13] | Erlich Y, Mitra P P, Delabastide M, et al. AltaCyclic: A self-optimizing base caller for next-generation sequencing. Nature Methods, 2008,5(8):679-682. |
[14] |
Nora Marín-de la Rosa, Chung-Wen Lin, Yang Jae Kang, et al. Drought resistance is mediated by divergent strategies in closely related Brassicaceae[J]. New Phytologist, 2019,223(2):783-797.
doi: 10.1111/nph.2019.223.issue-2 URL |
[15] |
Zeng D, Luo X. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance[J]. Open J Soil Sci, 2012,2:282-288.
doi: 10.4236/ojss.2012.23034 URL |
[16] |
Zhang S H, Xu X F, Sun Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018,17(2):336-347.
doi: 10.1016/S2095-3119(17)61758-1 URL |
[17] |
Yuan H, Yiming G, Yuting L, et al. 9-cis-Epoxycarotenoid Dioxygenase 3 Regulates Plant Growth and Enhances Multi-Abiotic Stress Tolerance in Rice[J]. Frontiers in Plant Science, 2018,9:162-180.
doi: 10.3389/fpls.2018.00162 URL |
[18] | 左应梅, 杨维泽, 杨天梅, 等. 干旱胁迫下4种人参属植物抗性生理指标的比较[J]. 作物杂志, 2016(3):84-88. |
[19] | 史玉炜, 王燕凌, 李文兵, 等. 水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J]. 新疆农业大学学报, 2007,30(2):5-8. |
[20] | 王红梅, 包维楷, 李芳兰. 不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应[J]. 应用与环境生物学报, 2008,14(6):757-762. |
[21] | 赵宏光, 寻路路, 梁宗锁, 等. 土壤水分含量对三七叶片生长、抗氧化酶活性及渗透调节物质含量的影响[J]. 西北农业学报, 2013,22(12):159-163. |
[22] |
Ma Y, Cao J, He J, et al. Molecular Mechanism for the Regulation of ABA Homeostasis During Plant Development and Stress Responses[J]. International Journal of Molecular Sciences, 2018,19(11):3643-3673.
doi: 10.3390/ijms19113643 URL |
[23] |
Rabbani M A, Maruyama K, Abe H, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses[J]. Plant Physiology. 2003; 133:1755-1767.
doi: 10.1104/pp.103.025742 URL |
[24] |
Fu Lili, Ding Zehong, Han Bingying, et al. Physiological Investigation and Transcriptome Analysis of Polyethylene[J]. International Journal of Molecular Sciences, 2016,17(3):283-301.
doi: 10.3390/ijms17030283 pmid: 26927071 |
[25] | 张荣萍. ABA与植物抗旱关系的研究进展[J]. 北京农业, 2014(27):242-243. |
[26] | 孙映波, 尤毅, 朱根发, 等. 干旱胁迫对文心兰抗氧化酶活性和渗透调节物质含量的影响[J]. 生态环境学报, 2011,20(11):1675-1680. |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | GU Shujie, QIAN Zhenfeng, LOU Yongming, SHEN Qingqing, PU Fengya, ZENG Dan, MA Hao, HE Lilian, LI Fusheng. Physiological Effects of Inoculated Endophytes on Sugarcane Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 42-47. |
[3] | LI Yunfeng, YAO Zhiping, FU Yanyan, HAN Dong, MA Shuqing. Regional Changes of Maize Drought in Jilin Province Based on the Effective Rainfall Deficit [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 62-69. |
[4] | JIANG Jufang, YANG Hua, HU Wenqing, WEI Yuguo. Effects of Continuous High Temperature and Drought Stress on the Growth of Spring Maize [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 63-68. |
[5] | FAN Xian, QUAN Yiji, YANG Shaolin, LI Rudan, DENG Jun, ZHANG Yuebin. Identification and Evaluation of Drought Resistance in Sugarcane Seedling Stage [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 17-24. |
[6] | WANG Shuo, JIA Xiaoqian, HE Lu, LI Haoran, WANG Hongguang, HE Jianning, LI Dongxiao, FANG Qin, LI Ruiqi. Response Mechanism of Crops to Drought Stress and Measures for Improving Drought Resistance of Crops: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 31-44. |
[7] | SHI Yang, YIN Xilong, LI Wangsheng, XING Wang. PEG Simulated Drought Stress: Effects on Morphological Indices of Drought-tolerant and Drought-sensitive Sugar Beet Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 45-51. |
[8] | REN Sanxue, QI Yue, TIAN Xiaoli, ZHAO Huarong. Responses of Photosynthetic Parameters and Yield of Winter Wheat at Filling Stage to Soil High Humidity and Drought Change [J]. Chinese Agricultural Science Bulletin, 2022, 38(29): 96-102. |
[9] | LI Wangsheng, WANG Xueqian, YIN Xilong, SHI Yang, XING Wang. Drought Resistance of Sugar Beet Seedling: Identification and Index Screening [J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 17-23. |
[10] | ZHANG Mengfei, LI Shuang, LI Yunsheng, MA Haixia, LIU Yueqiu. Evaluation on the Drought Resistance of Seedlings of Nine Greening Tree Species [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 38-46. |
[11] | YIN Shanshan, ZHOU Guoyan, GU Bowen, WU Chuncheng, YAN Liying, XIE Yang. Effects of Melatonin Priming on Physiological Characteristics of Cucumber Seedlings Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 30-36. |
[12] | SUN Xipeng, LI Qi, QIAO Yunfa, HU Zhenghua, ZHANG Xuying, LIU Yuanyuan. Warming and Drought in Hailun of Heilongjiang: Effects on Growth and Development of Soybean [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 27-33. |
[13] | ZHANG Ruijiu, MA Hui, JI Lijie, REN Dezhi, LI Shuangdong, ZHANG Yaohui, WANG Lihong. Effects of Drought Stress on Growth and Physiological and Biochemical Indexes of Potato Varieties [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 34-39. |
[14] | ZHENG Zehua, YU Yanlue, MA Zhongfen, ZHU Huaiwei. The Characteristics of Climate Change in Main Growing Stages of Blueberry from 1968 to 2018 in Qingpu, Shanghai [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 97-105. |
[15] | NI Shenhai, WANG Hengli, LIU Jingnan, GU Ying. Characteristics and Causes of Agricultural Drought Disasters in China [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 106-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||