Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (6): 87-93.doi: 10.11924/j.issn.1000-6850.casb2021-0346
Previous Articles Next Articles
YU Lan1(), WANG Haoran1, ZHANG Ying1, XING Hongyun1, DING Qi1, ZHAO Baozhen1, CUI Na1,2(
)
Received:
2021-03-05
Revised:
2021-07-08
Online:
2022-02-25
Published:
2022-03-16
Contact:
CUI Na
E-mail:3248357514@qq.com;cuina@syau.edu.cn
CLC Number:
YU Lan, WANG Haoran, ZHANG Ying, XING Hongyun, DING Qi, ZHAO Baozhen, CUI Na. Transcription Factor MYCs Regulating Terpenoids in Tomato Trichomes: Research Progress on Molecular Mechanism[J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 87-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0346
器官 | 化合物 | |
---|---|---|
单萜 | 倍半萜 | |
叶片 | α-蒎烯(α-pinene) 伞花烃(p-cymene) α-水芹烯(α-phellandrene) α-松油烯(α-terpinene) β-水芹烯(β-phellandrene) γ-松油烯(γ-terpinene) 月桂烯(myrcene) δ-蒈烯(δ-carene) 柠檬烯(limonene) 反式罗勒烯(trans-ocimene) 异松油烯(terpinolene) | β-石竹烯(β-caryophyllene) α-石竹烯(α-caryophyllene) |
茎 | α-蒎烯(α-pinene) 伞花烃(ρ-cymene) α-水芹烯(α-phellandrene) α-松油烯(α-terpinene) β-水芹烯 (β-phellandrene) γ-松油烯(γ-terpinene) 2-蒈烯(2-carene) β-罗勒烯(β-ocimene) 松油烯(terpinolene) D-柠檬烯(D-limonene) | β-石竹烯(β-caryophyllene) α-葎草烯(α-humulene) |
器官 | 化合物 | |
---|---|---|
单萜 | 倍半萜 | |
叶片 | α-蒎烯(α-pinene) 伞花烃(p-cymene) α-水芹烯(α-phellandrene) α-松油烯(α-terpinene) β-水芹烯(β-phellandrene) γ-松油烯(γ-terpinene) 月桂烯(myrcene) δ-蒈烯(δ-carene) 柠檬烯(limonene) 反式罗勒烯(trans-ocimene) 异松油烯(terpinolene) | β-石竹烯(β-caryophyllene) α-石竹烯(α-caryophyllene) |
茎 | α-蒎烯(α-pinene) 伞花烃(ρ-cymene) α-水芹烯(α-phellandrene) α-松油烯(α-terpinene) β-水芹烯 (β-phellandrene) γ-松油烯(γ-terpinene) 2-蒈烯(2-carene) β-罗勒烯(β-ocimene) 松油烯(terpinolene) D-柠檬烯(D-limonene) | β-石竹烯(β-caryophyllene) α-葎草烯(α-humulene) |
[1] |
HUCHELMANN A, BOUTRY M, HACHEZ C. Plant glandular trichomes: natural cell factories of high biotechnological interest[J]. Plant physiology, 2017, 175(1):6-22.
doi: 10.1104/pp.17.00727 URL |
[2] | LIU X, BARTHOLOMEW E, CAI Y, et al. Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L.)[J]. Frontiers in plant science, 2016, 7:1187. |
[3] | HAUSER M T. Molecular basis of natural variation and environmental control of trichome patterning[J]. Frontiers in Plant Science, 2014, 5(5):320. |
[4] |
OCHOA-LÓPEZ S, DAMIÁN X, REBOLLO R, et al. Ontogenetic changes in the targets of natural selection in three plant defenses[J]. New phytologist, 2020, 226(5):1480-1491.
doi: 10.1111/nph.v226.5 URL |
[5] |
KENNEDY G G. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon[J]. Annual review of entomology, 2003, 48(1):51-72.
doi: 10.1146/ento.2003.48.issue-1 URL |
[6] | KARIYAT R R, SMITH J D, STEPHENSON A G, et al. Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix[J]. Proceedings of the royal society b: biological sciences, 2017, 284(1849):20162323. |
[7] |
TIAN D, TOOKER J, PEIFFER M, et al. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum)[J]. Planta, 2012, 236(4):1053-1066.
doi: 10.1007/s00425-012-1651-9 URL |
[8] |
FRIDMAN E, WANG J, IIJIMA Y, et al. Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynjournal of methylketones[J]. Plant cell, 2005, 17(4):1252-1267.
doi: 10.1105/tpc.104.029736 URL |
[9] | LUU V T, WEINHOLD A, ULLAH C, et al. O-acyl sugars protect a wild tobacco from both native pungal pathogens and a specialist herbivore[J]. Plant physiology, 2017:370-386. |
[10] |
ENYA J, SHINOHARA H, YOSHIDA S, et al. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents[J]. Microbial ecology, 2007, 53(4):524-536.
doi: 10.1007/s00248-006-9085-1 URL |
[11] |
TANG T, LI C H, LI D S, et al. Peltate glandular trichomes of Colquhounia vestita harbor diterpenoid acids that contribute to plant adaptation to UV radiation and cold stresses[J]. Phytochemistry, 2020, 172:112285.
doi: 10.1016/j.phytochem.2020.112285 URL |
[12] |
ASHFAQ S, AHMAD M, ZAFAR M, et al. Foliar micromorphology of convolvulaceous species with special emphasis on trichome diversity from the arid zone of Pakistan[J]. Flora, 2019, 255:110-124.
doi: 10.1016/j.flora.2019.04.007 URL |
[13] | GALDON-ARMERO J, FULLANA-PERICAS M, MULET P A, et al. The ratio of trichomes to stomata is associated with water use efficiency in tomato[J]. Plant journal for cell & molecular biology, 2018, 96(3):607-619. |
[14] |
PROZHERINA N, FREIWALD V, OKSANEN R E. Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula)[J]. New phytologist, 2003, 159(3):623-636.
doi: 10.1046/j.1469-8137.2003.00828.x URL |
[15] |
SLETVOLD N, HUTTUNEN P, HANDLEY R, et al. Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata[J]. Evolutionary ecology, 2010, 24(6):1307-1319.
doi: 10.1007/s10682-010-9381-6 URL |
[16] |
BALCKE G U, BENNEWITZ S, BERGAU N, et al. Multi-omics of tomato glandular trichomes reveals distinct features of central carbon metabolism supporting high productivity of specialized metabolites[J]. Plant cell, 2017, 29(5):960-983.
doi: 10.1105/tpc.17.00060 URL |
[17] |
YANG C X, YE Z B. Trichomes as models for studying plant cell differentiation[J]. Cellular and molecular life sciences, 2013, 70(11):1937-1948.
doi: 10.1007/s00018-012-1147-6 URL |
[18] |
ZHANG B, CHOPRA D, SCHRADER A, et al. Evolutionary comparison of competitive protein-complex formation of MYB, bHLH, and WDR proteins in plants[J]. Journal of experimental botany, 2019, 70(12):3197-3209.
doi: 10.1093/jxb/erz155 URL |
[19] |
HUNG F Y, CHEN J H, FENG Y R, et al. Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3[J]. Plant journal, 2020, 103(5):1735-1743.
doi: 10.1111/tpj.v103.5 URL |
[20] |
PERES A, CHURCHMAN M L, HARIHARAN S, et al. Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses[J]. Journal of biological chemistry, 2007, 282(35):25588-25596.
doi: 10.1074/jbc.M703326200 URL |
[21] | MOROHASHI K, GROTEWOLD E. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors[J]. PLoS genetics, 2009, 5(2):e1000396. |
[22] | BRAMSIEPE J, WESTER K, WEINL C, et al. Endoreplication controls cell fate maintenance[J]. PLoS genetics, 2010, 6(6):e1000996. |
[23] |
SCHELLMANN S, SCHNITTGER A, KIRIK V, et al. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J]. The EMBO journal, 2002, 21(19):5036-5046.
doi: 10.1093/emboj/cdf524 URL |
[24] | PATTANAIK S, PATRA B, SINGH S K, et al. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis[J]. Frontiers in plant science, 2014, 5:259. |
[25] |
PAYNE T, CLEMENT J, ARNOLD D, et al. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum[J]. Development, 1999, 126(4):671-682.
doi: 10.1242/dev.126.4.671 URL |
[26] |
SERNA L, MARTIN C. Trichomes: different regulatory networks lead to convergent structures[J]. Trends in plant science, 2006, 11(6):274-280.
doi: 10.1016/j.tplants.2006.04.008 URL |
[27] |
GAO Y, LIU J, CHEN Y, et al. Tomato SlAN11 regulates flavonoid biosynjournal and seed dormancy by interaction with bHLH proteins but not with MYB proteins[J]. Horticulture research, 2018, 5(1):27.
doi: 10.1038/s41438-018-0032-3 URL |
[28] |
YING S, SU M, WU Y, et al. Trichome regulator SlMIXTA-like directly manipulates primary metabolism in tomato fruit[J]. Plant biotechnology journal, 2020, 18(2):354-363.
doi: 10.1111/pbi.v18.2 URL |
[29] | CHANG J, XU Z, LI M, et al. Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato[J]. PLoS genetics, 2019, 15(10):e1008438. |
[30] | LIU S, ZHANG Y, FENG Q, et al. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling[J]. Sentific reports, 2018, 8(1):2971. |
[31] |
CHALVIN C, DREVENSEK S, DRON M, et al. Genetic control of glandular trichome development[J]. Trends in plant science, 2020, 25(5):477-487.
doi: 10.1016/j.tplants.2019.12.025 URL |
[32] | EWAS M, GAO Y, ALI F, et al. RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato[J]. Science bulletin, 2017(7):476-485. |
[33] |
CHANG J, YU T, YANG Q, et al. Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato[J]. The plant journal, 2018, 96(1):90-102.
doi: 10.1111/tpj.14018 URL |
[34] | YU X, CHEN G, TANG B, et al. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants[J]. Plant science an international journal of experimental plant biology, 2018, 267:65. |
[35] |
CHEN Y, SU D, LI J, et al. Overexpression of SlbHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynjournal in tomato[J]. Journal of experimental botany, 2020, 71(12):3450-3462.
doi: 10.1093/jxb/eraa114 URL |
[36] |
WEI D, YANG Y, REN Z, et al. The tomato SlIAA15 is involved in trichome formation and axillary shoot development[J]. New phytologist, 2012, 194(2):379-390.
doi: 10.1111/nph.2012.194.issue-2 URL |
[37] |
KAWAGUCHI S, MIMURA M, OHYA T, et al. Hormone-mediated pattern formation in seedling of plants: a competitive growth dynamics model[J]. Journal of the physical society of Japan, 2003, 70(10):3155-3160.
doi: 10.1143/JPSJ.70.3155 URL |
[38] |
GLAS J J, SCHIMMEL B C, ALBA J M, et al. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores[J]. International journal of molecular sciences, 2012, 13(12):17077-17103.
doi: 10.3390/ijms131217077 URL |
[39] |
SIMMONS A T, GURR G M, MCGRATH D, et al. Entrapment of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on glandular trichomes of Lycopersicon species[J]. Australian journal of entomology, 2004, 43(2):196-200.
doi: 10.1111/aen.2004.43.issue-2 URL |
[40] |
VENDEMIATTI E, ZSÖGÖN A, SILVA G F F E, et al. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility[J]. Plant science, 2017, 259:35-47.
doi: 10.1016/j.plantsci.2017.03.006 URL |
[41] | SIMMONS A T, GURR G M. Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies[J]. Agricultural & forest entomology, 2010, 7(4):265-276. |
[42] |
CHANG J, XU Z, LI M, et al. Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato[J]. PLoS genetics, 2019, 15(10):e1008438.
doi: 10.1371/journal.pgen.1008438 URL |
[43] |
YANAGISAWA M, DESYATOVA A S, BELTETON S A, et al. Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis[J]. Nature plants, 2015, 1(3):15014.
doi: 10.1038/nplants.2015.14 URL |
[44] |
ZHANG Y, SONG H, WANG X, et al. The roles of different types of trichomes in tomato resistance to cold, drought, whiteflies, and botrytis[J]. Agronomy, 2020, 10(3):411.
doi: 10.3390/agronomy10030411 URL |
[45] |
MCDOWELL E T, KAPTEYN J, SCHMIDT A, et al. Comparative functional genomic analysis of Solanum glandular trichome types[J]. Plant physiology, 2011, 155(1):524-539.
doi: 10.1104/pp.110.167114 URL |
[46] |
WILLIAMS W G, KENNEDY G G, YAMAMOTO R T, et al. 2-tridecanone: a naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum[J]. Science, 1999, 207:888-889.
doi: 10.1126/science.207.4433.888 URL |
[47] |
SCHMIDT A, LI C, SHI F, et al. Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3’/5’-and 7/4’-myricetin O-methyltransferases[J]. Plant physiology, 2011, 155(4):1999-2009.
doi: 10.1104/pp.110.169961 URL |
[48] |
ZHOU F, PICHERSKY E. The complete functional characterisation of the terpene synthase family in tomato[J]. New phytologist, 2020, 226(5):1341-1360.
doi: 10.1111/nph.v226.5 URL |
[49] |
ABBAS F, KE Y, YU R, et al. Volatile terpenoids: multiple functions, biosynjournal, modulation and manipulation by genetic engineering[J]. Planta, 2017, 246(5):803-816.
doi: 10.1007/s00425-017-2749-x URL |
[50] | CHEN G, KLINKHAMER P G L, ESCOBAR-BRAVO R, et al. Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: implications for thrips resistance[J]. Plant sicence, 2018, 276:87-98. |
[51] |
CHEN M, GUO H, CHEN S, et al. Methyl jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit[J]. Journal of agricultural and food chemistry, 2019, 67(35):1-39.
doi: 10.1021/acs.jafc.8b06672 URL |
[52] |
ALI A Y A, IBRAHIM M E H, ZHOU G, et al. Exogenous jasmonic acid and humic acid increased salinity tolerance of sorghum[J]. Agronomy journal, 2020, 112(2):871-884.
doi: 10.1002/agj2.v112.2 URL |
[53] |
COELHO D G, DE ANDRADE H M, MARINATO C S, et al. Exogenous jasmonic acid enhances oxidative protection of Lemna valdiviana subjected to arsenic[J]. Acta physiologiae plantarum, 2020, 42(97):97.
doi: 10.1007/s11738-020-03086-0 URL |
[54] |
CHINI A, GIMENEZ I S, GOOSSENS A, et al. Redundancy and specificity in jasmonate signalling[J]. Current Opinion in Plant Biology, 2016, 33:147-156.
doi: 10.1016/j.pbi.2016.07.005 URL |
[55] |
GOOSSENS J, FERNÁNDEZ-CALVO P, SCHWEIZER F, et al. Jasmonates: signal transduction components and their roles in environmental stress responses[J]. Plant molecular biology, 2016, 91:673-689.
doi: 10.1007/s11103-016-0480-9 URL |
[56] |
XU J, VAN HERWIJNEN Z O, DRÄGER D B, et al. SlMYC1 regulates type VI glandular trichome formation and terpene biosynjournal in tomato glandular cells[J]. Plant cell, 2018, 30(12):2988-3005.
doi: 10.1105/tpc.18.00571 URL |
[57] |
LIU Y, DU M, DENG L, et al. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop[J]. Plant cell, 2019, 31(1):106-127.
doi: 10.1105/tpc.18.00405 URL |
[58] |
MIN D, LI F, CUI X, et al. SlMYC2 are required for methyl jasmonate-induced tomato fruit resistance to Botrytis cinerea[J]. Food chemistry, 2019, 310:125901.
doi: 10.1016/j.foodchem.2019.125901 URL |
[59] |
ZHANG F, YAO J, KE J, et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling[J]. Nature, 2015, 525:269-273.
doi: 10.1038/nature14661 URL |
[60] |
MAJOR I T, YOSHIDA Y, CAMPOS M L, et al. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module[J]. New phytologist, 2017, 215(4):1533-1547.
doi: 10.1111/nph.2017.215.issue-4 URL |
[61] |
DU M, ZHAO J, TZENG D T W, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato[J]. Plant cell, 2017, 29(8):1883-1906.
doi: 10.1105/tpc.16.00953 URL |
[62] |
PAUWELS L, BARBERO G F, GEERINCK J, et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464:788-791.
doi: 10.1038/nature08854 URL |
[63] |
GARRIDO-BIGOTES A, VALENZUELA-RIFFO F, TORREJÓN M, et al. A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1-JA-Ile/COR-JAZs complexes[J]. Scientific reports, 2020, 10(1):1-17.
doi: 10.1038/s41598-019-56847-4 URL |
[64] |
MAJOR I T, YOSHIDA Y, CAMPOS M L, et al. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module[J]. New phytologist, 2017, 215(4):1533-1547.
doi: 10.1111/nph.2017.215.issue-4 URL |
[65] |
THUROW C, KRISCHKE M, MUELLER M J. Induction of Jasmonoyl-Isoleucine (JA-Ile)-dependent JASMONATE ZIM-DOMAIN (JAZ) genes in NaCl-treated Arabidopsis thaliana roots can occur at very low JA-Ile levels and in the absence of the JA/JA-Ile transporter JAT1/AtABCG16[J]. Plants, 2020, 9(12):1635.
doi: 10.3390/plants9121635 URL |
[66] |
ORTIGOSA A, FONSECA S, FRANCO-ZORRILLA J M, et al. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression[J]. Plant journal, 2019, 102(1):138-152.
doi: 10.1111/tpj.v102.1 URL |
[67] |
WANG H, LI S, LI Y, et al. MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling[J]. Nature plants, 2019, 5(6):616-625.
doi: 10.1038/s41477-019-0441-9 URL |
[68] | AN C, LI L, ZHAI Q, et al. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin[J]. Proceedings of the national academy of sciences of the United of America, 2017, 114(42):8930-8939. |
[69] |
CHEN Q, SUN J, ZHAI Q, et al. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. Plant cell, 2011, 23(9):3335-3352.
doi: 10.1105/tpc.111.089870 URL |
[70] |
QI T, WANG J, HUANG H, et al. Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis[J]. Plant cell, 2015, 27(6):1634-1649.
doi: 10.1105/tpc.15.00110 URL |
[71] |
LI L, ZHAO Y, MCCAIG B C, et al. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[J]. Plant Cell, 2004, 16(1):126-143.
doi: 10.1105/tpc.017954 URL |
[72] |
YAN T, LI L, XIE L, et al. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua[J]. New phytologist, 2018, 218(2):567-578.
doi: 10.1111/nph.15005 URL |
[73] | SWINNEN G, DE MEYER M, POLLIER J, et al. Constitutive steroidal glycoalkaloid biosynjournal in tomato is regulated by the clade IIIe basic helix-loop-helix transcription factors MYC1 and MYC2[J]. bioRxiv, 2020. DOI: 10.1101/2020.01.27.921833. |
[1] | GONG Yongyong, DUANMU Huizi. TIFY Gene Family in Sugar Beet: Whole Genome Identification and Bioinformatics Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17-24. |
[2] | XU Xiaomei, LI Ying, HENG Zhou, XU Xiaowan, LI Tao, WANG Hengming. CaWRKY Transcription Factors Induced by Phytophthora capsici: Screening and Signal Pathway Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 22-31. |
[3] | MA Guifang, XIN Haibo, XIU Li, SUN Chaoxia, ZHANG Hua. Buckwheat Seed Shelling Characters: A Review [J]. Chinese Agricultural Science Bulletin, 2022, 38(24): 19-27. |
[4] | Ma Huimin, Sun Peilin, Ma Chunquan. Salt Tolerance Function of Transcription Factor BvM14-GAI [J]. Chinese Agricultural Science Bulletin, 2021, 37(34): 34-42. |
[5] | Wang Xue, Wang Shenghao, Yu Bing. Interaction Analysis of Transcription Factors and Promoters and Its Application in Response of Plants to Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. |
[6] | Sun Mingyang, Xu Shiqiang, Gu Yan, Mei Yu, Zhou Fang, Li Jingyu, Wang Jihua. The Full-length Transcriptome of Kalmegh (Andrographis paniculate): Sequencing and Characterization [J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 82-89. |
[7] | Du Xiaoxue, Huang Yuanyuan, Ma Chunquan, Li Haiying. Transcription Factor BvM14-Dof 3.4 in Response to Salt Stress: Functional Study [J]. Chinese Agricultural Science Bulletin, 2021, 37(21): 119-125. |
[8] | Liu Kaiyuan, Wang Maoliang, Xin Haibo, Zhang Hua, Cong Richen, Huang Dazhuang. Anthocyanin Biosynthesis and Regulate Mechanisms in Plants: A Review [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51. |
[9] | Li Ying, Du Chunmei. Virulence Factors of Pathogenic Fusarium oxysporum: Research Progress [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 92-97. |
[10] | Tan Jingfa, He Wenchuang, Dong Xilong, Dang Tengfei, Xie Yi, Xi Kun, Sun Yongsheng, Hu Yalin, Jin Deming. DREB2A Gene Resistant to Osmotic Stress in Rice Germplasms: Genetic Diversity Analysis [J]. Chinese Agricultural Science Bulletin, 2020, 36(35): 1-13. |
[11] | Yu bing,,李海英,, and Duanmu Huizi. Research Progress of Plant bHLH Transcription Factor [J]. Chinese Agricultural Science Bulletin, 2019, 35(9): 75-80. |
[12] | . Expression Change of Transcription Factors of Rice Under Drought Stress [J]. Chinese Agricultural Science Bulletin, 2019, 35(6): 108-114. |
[13] | . Tolerance and Response Mechanism of Cotton Under Waterlogging Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 16-26. |
[14] | Yang Yang,Li Yueying and Zhang Ying. Roles of WRKY Transcription Factors and Abscisic Acid Under Low Temperature [J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 31-35. |
[15] | Yuan Qi,Zhang Chunli,Zhao Tingting and Xu Xiangyang. Bioinformatics Analysis of GATA Transcription Factor in Pepper [J]. Chinese Agricultural Science Bulletin, 2017, 33(17): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||