Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (26): 69-75.doi: 10.11924/j.issn.1000-6850.casb2021-0868
Previous Articles Next Articles
DIAO Yunfei1,2,3(), ZHANG Su2, CONG Xidong2, DU Qian2, WANG Qiyao2, LIU Xue2,4(
)
Received:
2021-09-06
Revised:
2021-11-26
Online:
2022-09-15
Published:
2022-09-09
Contact:
LIU Xue
E-mail:diaoyunfei@126.com;80282674@qq.com
CLC Number:
DIAO Yunfei, ZHANG Su, CONG Xidong, DU Qian, WANG Qiyao, LIU Xue. Characteristics of Soil Nitrogen Components of Original Tilia Pinus Koraiensis Forest and Secondary Poplar-Birch Forest in Lesser Khingan Mountains[J]. Chinese Agricultural Science Bulletin, 2022, 38(26): 69-75.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0868
林型 | 土层深度 | 全氮/(g/kg) | 速效氮/(mg/kg) | 硝态氮/(mg/kg) | 铵态氮/(mg/kg) |
---|---|---|---|---|---|
红松林 成熟林 | 0~10 | 6.36±0.55 Ba | 201.13±13.32 Aa | 77.89±12.71 Ba | 78.55±13.47 Aa |
10~20 | 3.52±0.15 Bb | 138.08±23.97 Aa | 60.19±7.85 Bb | 61.23±6.13 Aa | |
20~30 | 2.46±0.24 Bb | 115.62±22.26 Aa | 40.98±5.67 Bb | 59.38±6.09 Aa | |
红松林 中幼龄林 | 0~10 | 9.11±0.42 Aa | 258.42±38.68 Aa | 64.03±0.76 Ba | 102.44±7.29 Aa |
10~20 | 4.75±0.45 Ab | 136.5±13.74 Aa | 45.63±1.76 Bb | 68.33±23.9 Aa | |
20~30 | 3.08±0.39 Ab | 120.87±21.62 Aa | 35.36±2.76 Bb | 48.49±14.32 Aa | |
次生 杨桦林 | 0~10 | 8.13±0.76 ABa | 273.11±43.5 Aa | 75.19±4.74 Aa | 91.22±17.23 Aa |
10~20 | 4.37±1.76 ABb | 163.35±15.89 Aa | 52.81±2.79 Ab | 76.95±18.55 Aa | |
20~30 | 3.40±1.70 ABb | 143.97±43.17 Aa | 43.97±2.99 Ab | 67.59±18.36 Aa |
林型 | 土层深度 | 全氮/(g/kg) | 速效氮/(mg/kg) | 硝态氮/(mg/kg) | 铵态氮/(mg/kg) |
---|---|---|---|---|---|
红松林 成熟林 | 0~10 | 6.36±0.55 Ba | 201.13±13.32 Aa | 77.89±12.71 Ba | 78.55±13.47 Aa |
10~20 | 3.52±0.15 Bb | 138.08±23.97 Aa | 60.19±7.85 Bb | 61.23±6.13 Aa | |
20~30 | 2.46±0.24 Bb | 115.62±22.26 Aa | 40.98±5.67 Bb | 59.38±6.09 Aa | |
红松林 中幼龄林 | 0~10 | 9.11±0.42 Aa | 258.42±38.68 Aa | 64.03±0.76 Ba | 102.44±7.29 Aa |
10~20 | 4.75±0.45 Ab | 136.5±13.74 Aa | 45.63±1.76 Bb | 68.33±23.9 Aa | |
20~30 | 3.08±0.39 Ab | 120.87±21.62 Aa | 35.36±2.76 Bb | 48.49±14.32 Aa | |
次生 杨桦林 | 0~10 | 8.13±0.76 ABa | 273.11±43.5 Aa | 75.19±4.74 Aa | 91.22±17.23 Aa |
10~20 | 4.37±1.76 ABb | 163.35±15.89 Aa | 52.81±2.79 Ab | 76.95±18.55 Aa | |
20~30 | 3.40±1.70 ABb | 143.97±43.17 Aa | 43.97±2.99 Ab | 67.59±18.36 Aa |
土壤性质 | 有机碳 | 全磷 | 全氮 | 硝态氮 | 铵态氮 | 速效氮 | 凋落物现存量 | 含水率 | 孔隙度 | C/N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
有机碳 | 1 | |||||||||||||||||||
全磷 | 0.553** | 1 | ||||||||||||||||||
全氮 | 0.443* | -0.151 | 1 | |||||||||||||||||
硝态氮 | 0.752** | 0.493** | 0.267 | 1 | ||||||||||||||||
铵态氮 | 0.207 | -0.047 | 0.500* | 0.160 | 1 | |||||||||||||||
速效氮 | 0.828** | 0.350 | 0.471* | 0.574** | 0.260 | 1 | ||||||||||||||
凋落物 | 0.316 | -0.034 | -0.041 | 0.420* | 0.006 | -0.378 | 1 | |||||||||||||
含水率 | -0.616** | -0.530** | -0.103 | -0.794** | -0.301 | 0.147 | -0.318 | 1 | ||||||||||||
孔隙度 | 0.794** | 0.300 | 0.730** | 0.659** | 0.515** | 0.708** | 0.210 | -0.536* | 1 | |||||||||||
C/N | 0.635 | 0.353 | 0.84 | 0.533 | 0.413 | 0.156 | 0.372 | -0.470 | 0.689* | 1 |
土壤性质 | 有机碳 | 全磷 | 全氮 | 硝态氮 | 铵态氮 | 速效氮 | 凋落物现存量 | 含水率 | 孔隙度 | C/N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
有机碳 | 1 | |||||||||||||||||||
全磷 | 0.553** | 1 | ||||||||||||||||||
全氮 | 0.443* | -0.151 | 1 | |||||||||||||||||
硝态氮 | 0.752** | 0.493** | 0.267 | 1 | ||||||||||||||||
铵态氮 | 0.207 | -0.047 | 0.500* | 0.160 | 1 | |||||||||||||||
速效氮 | 0.828** | 0.350 | 0.471* | 0.574** | 0.260 | 1 | ||||||||||||||
凋落物 | 0.316 | -0.034 | -0.041 | 0.420* | 0.006 | -0.378 | 1 | |||||||||||||
含水率 | -0.616** | -0.530** | -0.103 | -0.794** | -0.301 | 0.147 | -0.318 | 1 | ||||||||||||
孔隙度 | 0.794** | 0.300 | 0.730** | 0.659** | 0.515** | 0.708** | 0.210 | -0.536* | 1 | |||||||||||
C/N | 0.635 | 0.353 | 0.84 | 0.533 | 0.413 | 0.156 | 0.372 | -0.470 | 0.689* | 1 |
[1] |
GRANT R F. Nitrogen mineralization drives the response of forest productivity to soil warming: Modelling in ecosys vs. measurements from the Harvard soil heating experiment[J]. Ecological modelling, 2014, 288:38-46.
doi: 10.1016/j.ecolmodel.2014.05.015 URL |
[2] | 张笑千, 陈卓, 常鹏,等. 土壤氮素矿化研究进展[J]. 北方园艺, 2010(15):33-36. |
[3] | 李聪, 吕晶花, 陆梅,等. 文山自然保护区典型植被土壤碳氮储量变化特征[J]. 生态学杂志, 2021:1-15[2021-08-18]. https://doi.org/10.13292/j.1000-4890.202110.019. |
[4] |
MOFFAT A S. Global nitrogen overload problem grows critical[J]. Science, 1998. 279: 988-989.
doi: 10.1126/science.279.5353.988 URL |
[5] | 陈立新, 姜一,等. 红松混交林凋落物氮储量及分解释放对土壤氮的影响[J]. 生态学杂志, 2015.34(1):114-120. |
[6] | 张萍, 章广琦, 赵一娉,等. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报, 2018.38(14):5087-5098. |
[7] | 马红亮, 闫聪微, 高人,等. 林下凋落物去除与施氮对针叶林和阔叶林土壤氮的影响[J]. 环境科学研究, 2013.26(12):1316-1324. |
[8] | 袁志忠, Singh A N, 胡颖圆,等. 添加凋落物对土壤跳虫群落的影响[J]. 土壤通报, 2014.45(4):841-846. |
[9] |
KUZYAKOV Y, HORWATH W R, DORODNIKOV M. Review and synthesis of the effects of elevated atmospheric CO2on soil processes: NO changes in pools, but increased fluxes and accelerated cycles[J]. Soil biology and biochemistry, 2019, 128:66-78.
doi: 10.1016/j.soilbio.2018.10.005 URL |
[10] | WANG X, DAI W W, FILLEY T R, et al. Above ground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest[J]. Soil biology and biochemistry, 2021,,Aug. |
[11] | 阮超越, 刘小飞, 吕茂奎,等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020.57(4):954-962. |
[12] | 马寰菲, 解梦怡. 秦岭不同海拔森林土壤-植物-凋落物化学计量特征对土壤氮组分的影响[J]. 生态学杂志, 2020.39(3):749-757. |
[13] | 王泽西, 陈倩妹, 黄尤优,等. 川西亚高山森林土壤呼吸和微生物生物量碳氮对施氮的响应[J]. 生态学报, 2019.39(19):7197-7207. |
[14] | 姚甜甜, 张鹏, 万丹,等. 藏东南色季拉山迎风坡土壤物理性质垂直梯度差异性分析[J]. 北方园艺, 2019(24):94-102. |
[15] | CHEN S P, WANG W T, XU W T, et al. Plant diversity enhances productivity and soil carbon storage[J]. Proceedings of the national academy of sciences of the United States Of America, 2018, 115:4027-4032. |
[16] | 林宇, 何宗明, 丁国昌,等. 闽东南沿海2种防护林土壤有机碳和全氮垂直分布[J]. 东北林业大学学报, 2015, 43(9):67-71. |
[17] | 裴蓓, 高国荣, 凋落物分解对森林土壤碳库影响的研究进展[J]. 中国农学通报2018.34(26):58-64. |
[18] | 陈晓萍, 郭炳桥, 钟全林,等. 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应[J]. 生态学报, 2018.38( 1) : 273-281. |
[19] | 王鑫, 罗雪萍, 字洪标.等. 青海森林凋落物生态化学计量特征及其影响因子[J]. 草业学报, 2019, 28(8):1-14. |
[20] | 赵耀, 王百田, 李萌,等. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2018.24(3):518-524. |
[21] | BINGHAM A H, COTRUFO M F. Organic nitrogen storage in mineral soil[J].Implications for policy and management[J]. Sci total environment, 2016,May 1;551-552:116-26. |
[22] | LI Z, TIAN D, WANG B, Wang J, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Glob Chang Biol, 2019, Mar,25(3):1078-1088. |
[23] |
CHMITZ A, SANDERS T G M, BOLTE A, et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition[J]. Environ Pollution, 2019, Jan; 244:980-994.
doi: 10.1016/j.envpol.2018.09.101 URL |
[24] | RIBEIRO-KUMARA C, KÖSTER E, AALTONEN H, et al. How do forest fires affect soil greenhouse gas emissions in upland boreal forests?[J]. A review. Environment Res, 2020,May,184:109328. |
[25] | SUBASHREE K, DAR J A, SUNDARAPANDIAN S. Variation in soil organic carbon stock with forest type in tropical forests of Kanyakumari Wildlife Sanctuary,Western Ghats, India[J]. Environment monitor assess, 2019, Oct, 30;191(11):690. |
[26] |
VESTERDAL L, CLARKE N, SIGURDSSON B D, et al. Do tree species influence soil carbon stocks in temperate and boreal forests?[J]. Forest ecology and management, 2013, 309: 4-18.
doi: 10.1016/j.foreco.2013.01.017 URL |
[27] | CALLESEN I, BORKEN W, KALBITZ K, et al. Long-term development of nitrogen flues in a coniferous ecosystem: does soil freezing trigger nitrate leaching?[J]. Journal of plant nutrition and soil science, 2007, 170(2):186-196. |
[28] |
SOCCI A M, TEMPLER P H. Temporal patterns of inorganic nitrogen uptake by mature sugar maple(Acer saccharum Marsh.) and red spruce (picea rubens Sarg.) trees using two common approaches[J]. Plant ecology and diversity, 2011, 4(2/3):141-152.
doi: 10.1080/17550874.2011.624557 URL |
[1] | LU Qianqian, FENG Linjiao, WANG Shuang, GULIZHATI·Baoerhan , CHU Ren, ZHOU Long. Effects of Compound Saline-alkali Stress on Physiological and Biochemical Indexes of Table Grapes [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 62-70. |
[2] | CUI Yingying, ZHOU Bo, CHEN Yiyong, LIU Jiayu, LI Jianlong, TANG Hao, TANG Jinchi. Spatial-temporal Variation Analysis and Comprehensive Evaluation of Soil Fertility in Guangdong Major Tea Areas [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 85-95. |
[3] | JI Kun, WANG Bin, ZHAO Bowen, XUE Hao, WU Jianmin, ZHU Xiaojian, WANG Yixin, ZHAO Haijun, HAN Zanping. Different Maize Germplasm Materials: Grey Correlation Analysis of Plant and Ear-kernel Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 27-32. |
[4] | ZHOU Xiaohong. The Crop Yield Estimation Model Based on Multiple Regression Analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 152-156. |
[5] | ZHENG Benchuan, ZHANG Jinfang, JIANG Jun, CUI Cheng, CHAI Liang, HUANG Youtao, ZHOU Zhengjian, LI Haojie, JIANG Liangcai. Correlation Analysis of Main Traits and Yield of Brassica napus ‘Chuanyou’ Varieties with Different Maturity Stages [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 7-17. |
[6] | FU Yanyan, LI Yunfeng, HAN Dong, MA Shuqing. Water Surplus and Deficit of Maize Growing Season and Its Effect on Yield in Major Grain Producing Areas of Jilin Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(7): 99-105. |
[7] | YAO Jinbao, YANG Xueming, ZHOU Miaoping, ZHANG Peng. Analysis of Yield and Its Components of Wheat Varieties (Lines) in Jiangsu Province [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 15-19. |
[8] | DONG Hongye, XU Ting, LIU Wenhao, LI Qiang, LIU Yantao. Peanut in the Southeastern Margin of Tarim Basin of Xinjiang: Analysis and Comprehensive Evaluation of Main Agronomic Traits [J]. Chinese Agricultural Science Bulletin, 2022, 38(6): 26-30. |
[9] | Tsewang Thondup, DU Jun, , Phuntsok Samten. Spatial-temporal Change of Negative Accumulated Temperature in the Main Agricultural Regions of the Yarlung Zangbo River and Its Two Tributaries of Tibet During 1981-2020 [J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 99-105. |
[10] | HUNAG Lei, LI Yimeng, ZHONG Shuai, JIN Baofeng, GAO Jinjun, WANG Xiaoyuan, GUAN Luohao, WANG Chuliang, HUANG Wanting, LI Min. Changes of Physical and Chemical Indexes of Tobacco Leaves Sealed with Hypoxia After Unsealing [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 107-112. |
[11] | HUA Limin, LIU Huiying, XUE Yinghao, LAN Xiping, WANG Yitao, CAI Guangxing. Quantitative Assessment on Comprehensive Effects of Mulching Films by Integrated Evaluation Index Method [J]. Chinese Agricultural Science Bulletin, 2022, 38(4): 76-80. |
[12] | GUO Yulin, ZHANG Liguo, ZHENG Zhong, WANG Chunwei, XU Quanzhong, WU Yunxi, LI Guangpeng, SU Xiaohu, ZHANG Li. Study on the Correlation Between Serum Reproductive Hormone Content and Superovulation Effect in Dairy Meade Sheep [J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 90-96. |
[13] | HU Xinyue, SUN Qian, GULI GULI·Miedi Lihazi. Spatial-temporal Evolution of Normalized Difference Vegetation Index in Burqin County of Xinjiang in Five Years [J]. Chinese Agricultural Science Bulletin, 2022, 38(32): 6-11. |
[14] | LUO Wei, ZHOU Wei, WANG Zhenguo, LI Yan, YU Wenhao, YANG Zhiqiang, YU Zhonghao, LI Ziwen, ZHOU Yaxing. Twenty-four Sweet Sorghum Materials: Comprehensive Analysis of Main Agronomic Traits and Biological Yield [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 21-28. |
[15] | ZHAO Lijuan, ZHI Jiazeng, ZHANG Jianchun, DU Hao, ZHOU Jinsong, LIU Xuemin, ZHANG Rongqin. Diversity Analysis of Leaf Phenotypic Characters of Musa spp. Germplasms [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 56-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||