Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (2): 133-140.doi: 10.11924/j.issn.1000-6850.casb2021-0188
Special Issue: 生物技术
Previous Articles Next Articles
LIU Lilan(), QIU Qinqin, FAN Wenrong, TANG Jiao, HU Xiaobing, XIAO Wei, CHEN Ke(
)
Received:
2021-03-01
Revised:
2021-07-01
Online:
2022-01-15
Published:
2022-02-25
Contact:
CHEN Ke
E-mail:Lillian9799@163.com;chenke@swust.edu.cn
CLC Number:
LIU Lilan, QIU Qinqin, FAN Wenrong, TANG Jiao, HU Xiaobing, XIAO Wei, CHEN Ke. The Removal Process of Organophosphorus Pesticide Residues on the Surface of Commercial Fruits by Alkaline Electrolyzed Water[J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 133-140.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0188
处理 | BEW稀释比(V/V) | 处理时间/(min) | 处理体积/mL | 酶抑制率/% |
---|---|---|---|---|
1 | 1:5 | 3 | 200 | 37.32±2.88 |
2 | 1:5 | 1 | 200 | 15.08±2.29 |
3 | 1:9 | 3 | 300 | 11.55±1.25 |
4 | 1:9 | 2 | 200 | 20.84±0.72 |
5 | 1:9 | 2 | 400 | 43.65±2.27 |
6 | 1:5 | 2 | 300 | 23.54±2.57 |
7 | 1:5 | 2 | 300 | 19.91±0.47 |
8 | 1:1 | 2 | 200 | 55.41±1.94 |
9 | 1:9 | 1 | 300 | 11.15±6.94 |
10 | 1:5 | 2 | 300 | 20.83±2.96 |
11 | 1:1 | 3 | 300 | 51.45±1.93 |
12 | 1:5 | 1 | 400 | 42.89±5.13 |
13 | 1:5 | 3 | 400 | 45.05±6.02 |
14 | 1:1 | 2 | 400 | 68.42±4.02 |
15 | 1:1 | 1 | 300 | 17.53±1.21 |
16 | 1:5 | 2 | 300 | 24.03±5.01 |
17 | 1:5 | 2 | 300 | 20.62±2.94 |
处理 | BEW稀释比(V/V) | 处理时间/(min) | 处理体积/mL | 酶抑制率/% |
---|---|---|---|---|
1 | 1:5 | 3 | 200 | 37.32±2.88 |
2 | 1:5 | 1 | 200 | 15.08±2.29 |
3 | 1:9 | 3 | 300 | 11.55±1.25 |
4 | 1:9 | 2 | 200 | 20.84±0.72 |
5 | 1:9 | 2 | 400 | 43.65±2.27 |
6 | 1:5 | 2 | 300 | 23.54±2.57 |
7 | 1:5 | 2 | 300 | 19.91±0.47 |
8 | 1:1 | 2 | 200 | 55.41±1.94 |
9 | 1:9 | 1 | 300 | 11.15±6.94 |
10 | 1:5 | 2 | 300 | 20.83±2.96 |
11 | 1:1 | 3 | 300 | 51.45±1.93 |
12 | 1:5 | 1 | 400 | 42.89±5.13 |
13 | 1:5 | 3 | 400 | 45.05±6.02 |
14 | 1:1 | 2 | 400 | 68.42±4.02 |
15 | 1:1 | 1 | 300 | 17.53±1.21 |
16 | 1:5 | 2 | 300 | 24.03±5.01 |
17 | 1:5 | 2 | 300 | 20.62±2.94 |
来源 | 方差和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 4654.04 | 9 | 517.12 | 76.15 | < 0.0001 | *** |
A | 1394.45 | 1 | 1394.45 | 205.34 | < 0.0001 | *** |
B | 431.00 | 1 | 431.00 | 63.47 | < 0.0001 | *** |
C | 636.53 | 1 | 636.53 | 93.73 | < 0.0001 | *** |
AB | 280.90 | 1 | 280.90 | 41.36 | 0.0004 | ** |
AC | 24.01 | 1 | 24.01 | 3.54 | 0.1021 | — |
BC | 100.80 | 1 | 100.80 | 14.84 | 0.0063 | ** |
A2 | 181.44 | 1 | 181.44 | 26.72 | 0.0013 | ** |
B2 | 124.17 | 1 | 124.17 | 18.28 | 0.0037 | ** |
C2 | 1477.03 | 1 | 1477.03 | 217.50 | < 0.0001 | *** |
残差 | 47.54 | 7 | 6.79 | |||
失拟项 | 33.63 | 3 | 11.21 | 3.22 | 0.1438 | — |
误差 | 13.90 | 4 | 3.48 | |||
总拟差 | 4701.58 | 16 | ||||
R2 | 0.9899 | |||||
Radj2 | 0.9769 |
来源 | 方差和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 4654.04 | 9 | 517.12 | 76.15 | < 0.0001 | *** |
A | 1394.45 | 1 | 1394.45 | 205.34 | < 0.0001 | *** |
B | 431.00 | 1 | 431.00 | 63.47 | < 0.0001 | *** |
C | 636.53 | 1 | 636.53 | 93.73 | < 0.0001 | *** |
AB | 280.90 | 1 | 280.90 | 41.36 | 0.0004 | ** |
AC | 24.01 | 1 | 24.01 | 3.54 | 0.1021 | — |
BC | 100.80 | 1 | 100.80 | 14.84 | 0.0063 | ** |
A2 | 181.44 | 1 | 181.44 | 26.72 | 0.0013 | ** |
B2 | 124.17 | 1 | 124.17 | 18.28 | 0.0037 | ** |
C2 | 1477.03 | 1 | 1477.03 | 217.50 | < 0.0001 | *** |
残差 | 47.54 | 7 | 6.79 | |||
失拟项 | 33.63 | 3 | 11.21 | 3.22 | 0.1438 | — |
误差 | 13.90 | 4 | 3.48 | |||
总拟差 | 4701.58 | 16 | ||||
R2 | 0.9899 | |||||
Radj2 | 0.9769 |
[1] | 吴学进, 梁冬梅, 刘春华. 我国柑橘生产上应用的植物生长调节剂登记现况及其分析[J]. 中国果树, 2020, 204(4):128-133. |
[2] |
PUTNIK P, BARBA F J, LORENZO J M, et al. An integrated approach to mandarin processing:Food safety and nutritional quality,consumer preference, and nutrient bioaccessibility[J]. Comprehensive reviews in food science and food safety, 2017, 16(6):1345-1358.
doi: 10.1111/crf3.2017.16.issue-6 URL |
[3] | 丁晓波, 张华, 刘世尧, 等. 柑橘果品营养学研究现状[J]. 园艺学报, 2012, 39(9):1687-1702. |
[4] | 赵青红. 崇左市柑橘生产中农残超标的原因及预防措施[J]. 农民致富之友, 2018, 586(17):41. |
[5] | 张金平. 输美柑橘罐头禁用多菌灵农药[J]. 农药市场信息, 2016, 31(26):17. |
[6] | 陈道茂. 重视破解柑橘农药使用中存在的食品安全隐患[J]. 浙江柑桔, 2009, 26(4):17-19. |
[7] | 夏清华. 柑橘果实中有机磷类农药残留监测及其受加工处理的影响研究[D]. 重庆:西南大学, 2020. |
[8] | 高红刚, 娄金培. 超声波农药降解机降解效果研究[J]. 食品与机械, 2017, 33(11):86-88,99. |
[9] |
MISRA N N, PANKAJ S K, WALSH T, et al. In-package nonthermal plasma degradation of pesticides on fresh produce[J]. Journal of hazardous materials, 2014, 271(8):33-40.
doi: 10.1016/j.jhazmat.2014.02.005 URL |
[10] | 刘淑敏, 唐兰兰, 陈智玲, 等. 湛江四种市售蔬菜农药残留的监测分析及洗涤方法对农残的影响[J]. 现代食品科技, 2020, 36(1):275-280,215. |
[11] |
DE SOUZA L P, FARONI L R D, HELENO F F, et al. Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology[J]. Food chemistry, 2018, 243(6):435-441.
doi: 10.1016/j.foodchem.2017.09.134 URL |
[12] | 尹芳, 张无敌, 周肸, 等. 新型生物农药残留降解剂研发及其潜在前景展望[J]. 灾害学, 2016, 31(3):157-159,169. |
[13] |
KAUSHIK G, SATYA S, NAIK S N. Food processing a tool to pesticide residue dissipation - a review[J]. Food research international, 2009, 42(1):26-40.
doi: 10.1016/j.foodres.2008.09.009 URL |
[14] | RODRIGUES A A Z, DE QUEIROZ M, DE OLIVEIRA A F, et al. Pesticide residue removal in classic domestic processing of tomato and its effects on product quality[J]. Journal of environmental science and health part b-pesticides food contaminants and agricultural wastes, 2017, 52(12):850-857. |
[15] |
CENGIZ M F, BASLAR M, BASANCELEBI O, et al. Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications[J]. Food chemistry, 2018, 267(30):60-66.
doi: 10.1016/j.foodchem.2017.08.031 URL |
[16] | 郝建雄, 李里特. 电生功能水消除蔬菜残留农药的实验研究[J]. 食品工业科技, 2006, 27(5):164-166. |
[17] | YANG J, SONG L, PAN C P, et al. Removal of ten pesticide residues on/in kumquat by washing with alkaline electrolysed water[J]. International journal of environmental analytical chemistry. 2020, 100(8):1-14 |
[18] |
WU Y, AN Q, LI D, et al. Comparison of different home/commercial washing strategies for ten typical pesticide residue removal effects in kumquat, spinach and cucumber[J]. International journal of environmental research and public health, 2019, 16(3):1-20.
doi: 10.3390/ijerph16010001 URL |
[19] |
SUNG J M, KWON K H, KIM J H, et al. Effect of washing treatments on pesticide residues and antioxidant compounds in Yuja (Citrus junos sieb ex tanaka)[J]. Food science and biotechnology, 2011, 20(3):767-773.
doi: 10.1007/s10068-011-0107-5 URL |
[20] |
RAHMAN S M E, KHAN I, OH D H. Electrolyzed water as a novel sanitizer in the food industry: Current trends and future perspectives[J]. Comprehensive Reviews in food science and food safety, 2016, 15(3):471-490.
doi: 10.1111/crf3.2016.15.issue-3 URL |
[21] | ONOJI S E, IYUKE S E, IGBAFE A I, et al. Hevea brasiliensis (rubber seed) oil: Modeling and optimization of extraction process parameters using response surface methodology and artificial neural network techniques[J]. Biofuels-UK, 2019, 10(6):677-691. |
[22] |
IMRON M F, TITAH H S. Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design[J]. Environmental engineering research, 2018, 23(4):374-382.
doi: 10.4491/eer.2018.015 URL |
[23] |
CHEN G, CHEN J, SRINIVASAKANNAN C, et al. Application of response surface methodology for optimization of the synjournal of synthetic rutile from titania slag[J]. Applied surface science, 2012, 258(7):3068-3073.
doi: 10.1016/j.apsusc.2011.11.039 URL |
[24] | OLUSEGUN B P, TAYLOR S K, BYONG-HUN J, et al. Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: Response surface methodology, laccase stability and kinetics[J]. Ecotoxicology and environmental safety, 2021, 208(2):1-20. |
[25] |
DAS A, MISHRA S. Removal of textile dye reactive green-19 using bacterial consortium: Process optimization using response surface methodology and kinetics study[J]. Journal of environmental chemical engineering, 2017, 5(1):612-627.
doi: 10.1016/j.jece.2016.10.005 URL |
[26] | 王凌霄, 李再兴, 李涛, 等. 响应曲面法优化污泥碱解上清液中氮磷回收[J]. 水处理技术, 2020, 46(11):62-67. |
[1] | WANG Wenxuan, LI Yunpeng, XU Hening, ZHAO Xin, MA Rou, ZHANG Lina, ZHANG Yingying. Ultrasonic Extraction Process of Total Saponins from Leaves of Solanum torvum Swartz. [J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 118-125. |
[2] | JIANG Wenqiang, MIAO Linghong, GAO Liang, ZHU Yuejie, LIN Yan, LUO Chenhao, QIAN Linjie, CHEN Shiyou, ZHANG Weina, SHI Dalin, LIU Bo, SHEN Huaishun, GE Xianping. Study on Nutrients and Quality Improvement of Liquid Fermented Mulberry Leaf Meal by Bacillus zhangzhouensis Using Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2022, 38(16): 145-154. |
[3] | Xu Dandan, Xu Yaqin, Juan Xing, Zhou Shoubiao, Wang Changbao, Hang Hua. Optimization of Extraction Process of Se-enriched Jerusalem artichoke Polysaccharides and Its Antioxidant Activity [J]. Chinese Agricultural Science Bulletin, 2021, 37(30): 121-127. |
[4] | Xiao Qinjian, Zhang Xiaohu, Gao Mengdie, Zhang Junwei. Extraction and Separation of Schisandrin B and Its Compound Preservative [J]. Chinese Agricultural Science Bulletin, 2021, 37(12): 126-135. |
[5] | Yang Dandan, Yang Chuanlun, Zhang Xinqing, Pan Dongmei, Li Jiaming, Chen Zhenfa. Response Surface Methodology Applied to Spores Production by Solid-state Fermentation of Trichoderma Viride [J]. Chinese Agricultural Science Bulletin, 2020, 36(36): 84-92. |
[6] | Lin Fan, Hou Xiaoxiao, Liu Jingyu, Chang Mingchang, Meng Junlong. Extraction Technology and Antioxidant Activity of Polysaccharides from Cordyceps militaris Fruiting Body [J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 122-128. |
[7] | . Optimization of Brown Rice Instant Porridge Processing Technology Based on Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2019, 35(8): 106-113. |
[8] | . Flavonoids from Seeds of Mirabilis jalapa: Extraction Technology Optimized by Response Surface Methodology and Antioxidant Activity [J]. Chinese Agricultural Science Bulletin, 2019, 35(34): 127-133. |
[9] | . Optimization of Suspension Culture Condition for Producing Rosmarinic Acid from Perilla Cells [J]. Chinese Agricultural Science Bulletin, 2019, 35(28): 32-37. |
[10] | . Wogonin Extraction from Shangluo Scutellaria baicalensis and Application of Its Compound Preservative Solution [J]. Chinese Agricultural Science Bulletin, 2019, 35(22): 147-155. |
[11] | . Chlorogenic Acid and Rutin from Inferior and Waste Tobacco: Extraction Process [J]. Chinese Agricultural Science Bulletin, 2019, 35(1): 57-62. |
[12] | . Technique Optimization for Extracting Total Flavonoids in Anoectochilus Roxburghii by Ultrasonic-Assisted Solvent [J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 148-158. |
[13] | 史美荣. Triterpenes from Astragali complanati Semen: Enzyme-assisted Extraction Technology Optimized by Response Surface Methodology and Its Antioxidant Activity [J]. Chinese Agricultural Science Bulletin, 2017, 33(26): 25-32. |
[14] | Shi Meirong. Optimization of Ultrasonic-assisted Extraction of Total Flavonoids from Gueldenstadetia verna by Response Surface Methodology [J]. Chinese Agricultural Science Bulletin, 2017, 33(23): 129-137. |
[15] | Li Yuanci,Shi Meirong and Li Xiaohua. Pesticide Sewage Treated by Iron Carbon Microelectrolysis [J]. Chinese Agricultural Science Bulletin, 2017, 33(21): 95-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||